Murine species trees & rates

knitr::opts_chunk$set(echo = TRUE, warning = FALSE, message = FALSE)

library(ggplot2)
library(cowplot)
library(ggbeeswarm)
library(dplyr)
library(kableExtra)
library(tidyr)
library(ggtree)
library(phytools)
library(phangorn)
library(reshape2)
library(ggExtra)
library(ggrepel)
library(vroom)
library(ggdist)
library(stringr)
library(ggsignif)
source("C:/bin/core/r/design.r")
source("C:/bin/core/r/get_tree_info.r")
#source("C:/Users/grt814/bin/core/corelib/design.r")
#source("C:/Users/grt814/bin/core/get_tree_info.r")

#htmltools::includeHTML("../html-chunks/rmd_nav.html")

< Back to summary

1 Full coding species tree

# This chunk handles all of the main inputs and reads the tree

#tree_type = "astral"
save_tree_fig = F
# Meta options. Comment tree_type when running form generator

cat(tree_type, " tree\n")
## astral  tree
cat("188 species targeted capture to mouse exons assembled with SPADES.\n")
## 188 species targeted capture to mouse exons assembled with SPADES.
cat("11,775 coding loci aligned with exonerate+mafft\n")
## 11,775 coding loci aligned with exonerate+mafft
cat("Gene trees inferred with IQtree.\n")
## Gene trees inferred with IQtree.
# Data summary

if(tree_type == "astral"){
  cat("Species tree inferred with ASTRAL.\n")
  cat("Branch lengths estimated by ASTRAL.\n")
  tree_file = "../../data/trees/full_coding_iqtree_astral.cf.rooted.labeled.tree"
  iq_tree_labels = "../../data/trees/full_coding_iqtree_astral.cf.branch.rooted"
  cf_stat_file = "../../data/trees/full_coding_iqtree_astral.cf.stat"
  cf_rep_dir = "../../data/trees/astral-cf-reps/"
  delta_outfile = "../../data/trees/astral-delta.tab"
  branch_rates_file = "../../data/rates/full-coding-astral-slac-branch-rates.csv"
  branch_rates_file_arid = "../../data/rates/full-coding-astral-slac-branch-rates-arid.csv"
  branch_rates_file_mf = "../../data/rates/full-coding-astral-slac-branch-rates-morphofacial.csv"
  col_file = "../../data/trees/astral-colonization-branches.txt"
  morpho_file = "../../data/trees/astral-moprho-ou-shift-branches.txt"
  exclude_branches = c("Lophiomys_imhausi_UM5152", "Lophuromys_woosnami_LSUMZ37793", "<1>", "<187>", "<186>")
  xmax = 31
}else if(tree_type == "concat"){
  cat("Species tree inferred by concatenation of all loci with IQtree.\n")
  tree_file = "../../data/trees/full_coding_iqtree_concat.cf.rooted.tree"
  iq_tree_labels = "../../data/trees/full_coding_iqtree_concat.cf.branch.rooted"
  cf_stat_file = "../../data/trees/full_coding_iqtree_concat.cf.stat"
  cf_rep_dir = "../../data/trees/concat-cf-reps/"
  delta_outfile = "../../data/trees/concat-delta.tab"
  branch_rates_file = "../../data/rates/full-coding-concat-slac-branch-rates.csv"
  col_file = ""
  exclude_branches = c("Lophiomys_imhausi_UM5152", "Lophuromys_woosnami_LSUMZ37793", "<1>", "<187>", "<186>")
  xmax = 0.125
}
## Species tree inferred with ASTRAL.
## Branch lengths estimated by ASTRAL.
# Tree type specific info, options, and files

gt_file = "../../data/trees/loci-labeled.treefile"
# The file containing the gene trees

gene_rates_file = "../../data/rates/full-coding-slac.csv.gz"
# File with rates calculated per gene

rodent_tree = read.tree(tree_file)
tree_to_df_list = treeToDF(rodent_tree)
tree_info = tree_to_df_list[["info"]]
# Read the tree and parse with treetoDF

if(tree_type == "astral"){
  tree_info = tree_info %>% separate(label, c("tp", "astral", "gcf", "scf"), sep="/", remove=F)
  # Split the label by /. tp is my treeParse label.
  
  tree_info$astral[tree_info$node.type=="tip"] = NA
  # Fill in ASTRAL support as NA for the tips
  
  tree_info$astral = as.numeric(tree_info$astral)
  tree_info$gcf = as.numeric(tree_info$gcf)
  tree_info$scf = as.numeric(tree_info$scf)
  # Convert all supports to numeric
  
}else if(tree_type == "concat"){
  tree_info = tree_info %>% separate(label, c("tp", "bootstrap"), sep="/", remove=F)
  # Split the label by /. tp is my treeParse label.
  
  tree_info$bootstrap[tree_info$node.type=="tip"] = NA
  # Fill in bootstrap support as NA for the tips
  
  tree_info$bootstrap = as.numeric(tree_info$bootstrap)
  tree_info$gcf = as.numeric(tree_info$gcf)
  tree_info$scf = as.numeric(tree_info$scf)
  # Convert all supports to numeric
}

cf_stats = read.table(cf_stat_file, header=T)
# Read the concordance factor table
# The node/branch labels in R and IQtree differ. IQtree uses a nice, logical post-ordering
# of internal nodes while R does something random and assigns labels to tips as well. This 
# chunk matches those up for the delta analysis later

iq_tree = read.tree(iq_tree_labels)
iqtree_to_df_list = treeToDF(iq_tree)
iqtree_info = iqtree_to_df_list[["info"]]
# Read the IQ tree tree with branch labels in and parse with get_tree_info

#node_convert = matchNodes(tree_to_df_list[["labeled.tree"]], iqtree_to_df_list[["labeled.tree"]], method="descendants")

tree_info$iqtree.node = NA
# Add a column to the main tree table about IQ tree labels

for(i in 1:nrow(tree_info)){
  cur_node = tree_info[i,]$node
  iqtree_row = subset(iqtree_info, node==cur_node)
  iqtree_label = iqtree_row$label
  tree_info[i,]$iqtree.node = iqtree_label
}
# For every row in the main tree table, add in the IQ tree node label given that
# we've read the same tree in R and can use the node.labels

1.1 Branches colored by gCF

h = corecol(numcol=1, pal="wilke", offset=3)
l = corecol(numcol=1, offset=3)
# Colors

gcf_tree = ggtree(rodent_tree, size=0.8, ladderize=F, aes(color=tree_info$gcf)) +
  scale_color_continuous(name='gCF', low=l, high=h, limits=c(0,100)) +
  xlim(0, xmax) +
  geom_tiplab(color="#333333", fontface='italic', size=2) +
  theme(legend.position=c(0.05,0.9))
print(gcf_tree)

if(save_tree_fig){
  gcf_tree = gcf_tree + geom_text(aes(x=branch, label=ifelse(tree_info$node.type=="internal",as.character(node), ''), label.size=NA, fill="transparent"), size=2, vjust=-0.2)
  tree_outfile = paste("../../data/trees/", tree_type, "-gcf-tree-PARED-gcf50.pdf", sep="")
  ggsave(tree_outfile, gcf_tree, width=8, height=16, unit="in")
}
# gCF tree

1.2 Branches colored by sCF

h = corecol(numcol=1, pal="wilke", offset=3)
l = corecol(numcol=1, offset=3)
# Colors

scf_tree = ggtree(rodent_tree, size=0.8, ladderize=F, aes(color=tree_info$scf)) +
  scale_color_continuous(name='sCF', low=l, high=h, limits=c(0,100)) +
  xlim(0, xmax) +
  geom_tiplab(color="#333333", fontface='italic', size=2) +
  theme(legend.position=c(0.05,0.9))
#geom_text(aes(label=rodent_data$support), hjust=-.1, color="#006ddb") +
#geom_nodepoint(color="#666666", alpha=0.85, size=4)
print(scf_tree)

#ggsave("../data/trees/scf-tree.pdf", scf_tree, width=8, height=16, unit="in")
# sCF tree

1.3 Gene vs site concordance factors colored by branch support

h = corecol(numcol=1, pal="wilke", offset=3)
l = corecol(numcol=1, offset=3)
# Colors

if(tree_type == "astral"){
  p = ggplot(tree_info, aes(x=gcf, y=scf, color=astral)) + 
    geom_point(size=2, alpha=0.5) +
    scale_color_continuous(name='Astral support', low=l, high=h, limits=c(0.8,1))
}else if(tree_type == "concat"){
  p = ggplot(tree_info, aes(x=gcf, y=scf, color=bootstrap)) + 
    geom_point(size=2, alpha=0.5) +
    scale_color_continuous(name='Bootstrap', low=l, high=h, limits=c(0,100))
}
p = p + bartheme() +
  theme(legend.title=element_text(size=12))
print(p)

1.4 Concordance factors vs. branch lengths

bl_gcf_p = ggplot(tree_info, aes(x=branch.length, y=gcf)) +
  geom_point(size=3, alpha=0.5) +
  #geom_text_repel(aes(label=ifelse(avg.ds>0.2|avg.dn>0.01,as.character(node),'')), show_guide=F) +
  #geom_smooth(method="lm", se=F, ) +
  xlab("Branch length") + 
  ylab("gCF per branch") + 
  bartheme()
  if(tree_type=="concat"){
    bl_gcf_p = bl_gcf_p + scale_x_continuous(limits=c(0,0.035))
  }
  #theme(legend.position="bottom") +
  #guides(colour = guide_legend(override.aes = list(alpha = 1)))
bl_gcf_p = ggExtra::ggMarginal(bl_gcf_p, type="histogram", bins=50, fill=corecol(pal="wilke", numcol=1, offset=4), color="#666666")

bl_scf_p = ggplot(tree_info, aes(x=branch.length, y=scf)) +
  geom_point(size=3, alpha=0.5) +
  #geom_text_repel(aes(label=ifelse(avg.ds>0.2|avg.dn>0.01,as.character(node),'')), show_guide=F) +
  #geom_smooth(method="lm", se=F, ) +
  xlab("Branch length") + 
  ylab("sCF per branch") + 
  bartheme()
  if(tree_type=="concat"){
    bl_scf_p = bl_scf_p + scale_x_continuous(limits=c(0,0.035))
  }
  #theme(legend.position="bottom") +
  #guides(colour = guide_legend(override.aes = list(alpha = 1)))
bl_scf_p = ggExtra::ggMarginal(bl_scf_p, type="histogram", bins=50, fill=corecol(pal="wilke", numcol=1, offset=5), color="#666666")

p = plot_grid(bl_gcf_p, bl_scf_p, ncol=2)
print(p)

2 Gene trees

The 11,774 gene trees contain varying numbers of taxa due to filtering on the alignment and filtering by IQtree for identical sequences.

2.1 Taxa per gene tree

gene_trees = read.table(gt_file, sep="\t")
names(gene_trees) = c("gene", "tree")
# Read the geen tree file

gene_trees$gene = word(gene_trees$gene, 1, sep="-")
gene_trees$gene = word(gene_trees$gene, 2, sep="/")
# Parse out the protein ID from the filename for each gene

gt_data = data.frame("gene"=c(), "rf"=c(), "num.tips"=c(), "rf.zeros"=c(), "num.tips.zeros"=c())
# A df to track info for each gene tree

for(i in 1:nrow(gene_trees)){
  gt = read.tree(text=gene_trees[i,]$tree)
  # Read the gene tree as a phylo object
  
  cur_tips = gt$tip.label
  pruned_tree = drop.tip(rodent_tree, rodent_tree$tip.label[-match(cur_tips, rodent_tree$tip.label)])
  # Get a list of the tips and prune the species tree to contain only those tips
  
  cur_rf = RF.dist(pruned_tree, gt, normalize=T)
  # Calculate RF between the pruned species tree and the gene tree
  
  if(cur_rf==0){
    gt_data = rbind(gt_data, data.frame("gene"=gene_trees[i,]$gene, "rf"=cur_rf, "num.tips"=length(cur_tips), "rf.zeros"=cur_rf, "num.tips.zeros"=length(cur_tips)))
  }else{
    gt_data = rbind(gt_data, data.frame("gene"=gene_trees[i,]$gene, "rf"=cur_rf, "num.tips"=length(cur_tips), "rf.zeros"=NA, "num.tips.zeros"=NA))
  }
  # Add the gene tree info to the df, with a special case for when the RF is 0
}
# Read all the gene trees

p = ggplot(gt_data, aes(x=num.tips)) +
  geom_histogram(bins=50, fill=corecol(pal="wilke", numcol=1, offset=6), color="#666666") +
  #geom_quasirandom(size=2, width=0.25, alpha=0.25, color="#666666") +
  #geom_boxplot(outlier.shape=NA, alpha=0.75, width=0.5, color="#666666") +
  scale_y_continuous(expand=c(0,0)) +
  xlab("# of taxa") +
  ylab("# of gene trees") +
  bartheme()
print(p)

#write.table(subset(gt_data, rf<=0.25), file="../../data/trees/loci-nrf-below-0.25.txt", row.names=F, quote=F, sep="\t")
# Write info for genes with low RF

2.2 Tree distance (RF) between gene trees and species tree

Since RF cannot handle missing taxa, the species tree is pruned for each gene tree to calculate Robinson-Foulds distance. We use the normalized metric since there are varying numbers of tips per gene tree.

p = ggplot(gt_data, aes(x=rf)) +
  geom_histogram(bins=50, fill=corecol(pal="wilke", numcol=1, offset=4), color="#666666") +
  #geom_quasirandom(size=2, width=0.25, alpha=0.25, color="#666666") +
  #geom_boxplot(outlier.shape=NA, alpha=0.75, width=0.5, color="#666666") +
  scale_y_continuous(expand=c(0,0)) +
  xlab("Normalized RF") +
  ylab("# of gene trees") +
  bartheme()
print(p)

3 Delta

3.1 Introduction

For each lineage in the species tree with gCF < 95% we calculated the \(\Delta\) statistic (Huson et al. 2005). This statistic follows the same logic as the ABBA-BABA site patterns used to calculate D-statistics, but uses gene tree topologies instead of alignment sites. Briefly, a given branch in an unrooted tree is defined by a quartet of species groupings with two possible discordant topologies, \(D_1\) and \(D_2\) (see Figure 1 from Minh et al. 2020). Under assumptions that discordance is caused by ILS, both discordant topologies should be present in equal proportions. However, if introgression has occurred one discordant topology will appear more frequently than the other. \(\Delta\) is calculated for a branch as follows, using the frequency of each discordant topology (Vanderpool et al. 2020):

\[\Delta = \frac{D_1 - D_2}{D_1 + D_2}\]

This normalized \(\Delta\) calculation ensures that all values are scaled between 0 and 1, with larger values indicating a larger skew towards one topology, and a higher chance that introgression has occurred.

To test whether the observed \(\Delta\) values are skewed significantly from 0 to imply introgression, we performed concordance factor analysis on 1,000 bootstrap replicates of our inferred gene trees to generate a null distribution of \(\Delta\) values. We then calculated Z-scores and p-values and assessed significance for each branch at a threshold of 0.01.

3.2 Null and actual distributions

Nodes with p < 0.01:

cf_stats$delta = (abs(cf_stats$gDF1_N - cf_stats$gDF2_N)) / (cf_stats$gDF1_N + cf_stats$gDF2_N)
# Calculate the delta values on the actual data

iqtree_delta = select(cf_stats, ID, delta)
names(iqtree_delta) = c("iqtree.node", "delta")
tree_info = merge(x = tree_info, y = iqtree_delta, by = "iqtree.node", all.x=TRUE)
# Adding the delta values to the main tree info table

tree_info = tree_info[order(tree_info$node), ]
# Re-sort the data frame by R node order after the merge so the trees still work

low_cf_nodes = subset(cf_stats, gCF < 95)
# Get the low concordance factor nodes from the data to test with delta

delta_null = c()
for(i in 0:999){
  cur_rep_str = as.character(i)
  #print(cur_rep_str)
  while(nchar(cur_rep_str) < 4){
    cur_rep_str = paste("0", cur_rep_str, sep="")
  }
  # Handling the string of the rep
  
  cur_cf_file = paste(cf_rep_dir, "rep", cur_rep_str, ".cf.stat", sep="")
  cf_rep = read.table(cur_cf_file, header=T, fill=T)
  # Read the current reps cf file
  
  cf_rep$delta = (abs(cf_rep$gDF1_N - cf_rep$gDF2_N)) / (cf_rep$gDF1_N + cf_rep$gDF2_N)
  delta_null = c(delta_null, cf_rep$delta)
  # Calculate delta for this rep and save values in vector
}
# Read concordance factors from bootstrap samples of gene trees and calculate delta to generate
# null distribution

delta_null_df = data.frame("delta"=delta_null, y="duh")
delta_null_df = subset(delta_null_df, !is.nan(delta))
# Convert the delta values to a data frame for ggplot

delta_mu = mean(delta_null_df$delta, na.rm=T)
delta_sd = sd(delta_null_df$delta, na.rm=T)
# Calculate the mean and sd of the null distribution to get z-scores and p-values

delta_out = data.frame("node"=c(), "delta"=c(), "z-score"=c(), "p-value"=c())
# Initialize output data frame

tree_info$delta.sig = F
# Add a column to the tree info table about significant delta values

for(i in 1:nrow(low_cf_nodes)){
  row = low_cf_nodes[i,]
  z = (row$delta - delta_mu) / delta_sd
  p = pnorm(-abs(z))
  if(p < 0.01){
    print(paste(row$ID, row$delta, z, p, sep=" "))
    tree_info$delta.sig[tree_info$iqtree.node==row$ID] = T
    # Set the delta significant to TRUE in the main tree info table
  }
  delta_out = rbind(delta_out, data.frame("node"=row$ID, "delta"=row$delta, "z-score"=z, "p-value"=p))
}
## [1] "282 0.40548137737175 2.43334742938723 0.00747996932293452"
## [1] "286 0.410672853828306 2.47825884686394 0.00660126628112862"
## [1] "288 0.627906976744186 4.3575493466097 6.57634251391119e-06"
## [1] "304 0.407725321888412 2.45275977379941 0.0070882488601971"
## [1] "307 0.511338697878566 3.34911818439904 0.00040534603511502"
## [1] "312 0.41615356754799 2.52567245337739 0.00577385448888136"
## [1] "357 0.532062391681109 3.5283986784577 0.000209040982510575"
## [1] "359 0.465612648221344 2.95354252824397 0.00157074659668177"
# Calculate z and p for each low gCF node in the species tree and save to output data frame

write.table(file=delta_outfile, delta_out, sep="\t", row.names=F)

delta_null_p = ggplot(delta_null_df, aes(x=delta)) +
  geom_histogram(color="#ececec", bins=50) +
  scale_x_continuous(limits=c(0,1)) +
  scale_y_continuous(expand=c(0,0)) +
  xlab("Delta") + 
  ylab("# nodes") +
  bartheme()

delta_actual_p = ggplot(low_cf_nodes, aes(x=delta)) +
  geom_histogram(fill="#920000", color="#ececec") +
  scale_x_continuous(limits=c(0,1)) +
  scale_y_continuous(expand=c(0,0)) +
  xlab("Delta") +
  ylab("# nodes") +
  bartheme()

delta_p = plot_grid(delta_null_p, delta_actual_p, ncol=2, labels=c("Null distribution", "Actual distribution"), label_size=12)
print(delta_p)

3.3 Branches with evidence for introgression

h = corecol(numcol=1, pal="wilke", offset=1)
l = corecol(numcol=1, offset=1)

intro_tree = ggtree(rodent_tree, size=0.8, ladderize=F, aes(color=tree_info$delta.sig)) +
  scale_color_manual(name="Significant Delta", labels=c("False", "True"), values=corecol(pal="trek", numcol=2)) +
  xlim(0, xmax) +
  geom_tiplab(color="#333333", fontface='italic', size=2) +
  theme(legend.position=c(0.05,0.9)) +
  geom_label(aes(x=branch, label=ifelse(tree_info$delta.sig,as.character(tree_info$tp),'')), label.size=NA, fill="transparent", show.legend=F, vjust=-0.1)
#geom_text(aes(label=rodent_data$support), hjust=-.1, color="#006ddb") +
#geom_nodepoint(color="#666666", alpha=0.85, size=4)
print(intro_tree)

3.4 Concordance factors and Delta

l = corecol(numcol=1, pal="wilke", offset=3)
h = corecol(numcol=1, offset=3)
# Colors

p = ggplot(tree_info, aes(x=gcf, y=scf, color=delta)) + 
  geom_point(size=2, alpha=0.5) +
  geom_text_repel(aes(label=ifelse(delta.sig,as.character(tp),'')), show_guide=F, min.segment.length=0) +
  scale_color_continuous(name='Delta', low=l, high=h) +
  xlab("gCF") +
  ylab("sCF") +
  bartheme() +
  theme(legend.title=element_text(size=12))

print(p)

< Back to summary

4 Substitution rates by gene (mg94-local)

We ran each of the 11,775 coding loci through HyPhy’s standard MG94 fit with the -local option to estimate a rate for each branch in the input tree.

For input trees we used the gene tree estimated from each individual alignment to reduce false inferences of substitutions that result from tree misspecification.

rates = vroom(gene_rates_file, comment="#")
# Use vroom to unzip and read the gene rates file
# NOTE: vroom does a bad job cleaning up huge tmp files, so be sure to check manually

rates$dn = rates$N / rates$EN
rates[is.nan(rates$dn),]$dn = NA
rates$ds = rates$S / rates$ES
rates[is.nan(rates$ds),]$ds = NA
rates$dn.ds = rates$dn / rates$ds

gene_rates = group_by(rates, file) %>% summarize(dn=mean(dn, na.rm=T), ds=mean(ds, na.rm=T), dn.ds=mean(dn.ds, na.rm=T))
# Average rates for each branch by gene

gene_rates$high.dn.ds = "N"
gene_rates[gene_rates$dn / gene_rates$ds > 1,]$high.dn.ds = "Y"
p = ggplot(subset(gene_rates, ds < 0.05), aes(x=ds, y=dn, color=high.dn.ds)) +
  geom_point(size=2, alpha=0.2) +
  #geom_smooth(method="lm", se=F, ) +
  xlab("Avg. dS per gene") + 
  ylab("Avg. dN per gene") + 
  scale_color_manual(name="dN/dS>1", values=c("#333333", corecol(numcol=1, offset=2))) +
  bartheme() +
  theme(legend.position="bottom",
        legend.title = element_text(size=14))
p = ggExtra::ggMarginal(p, type="histogram", bins=50, fill=corecol(pal="wilke", numcol=1), color="#666666")
print(p)

ds_p = ggplot(subset(gene_rates, ds < 0.05), aes(x=ds)) +
  geom_histogram(bins=50, fill=corecol(pal="wilke", numcol=1), color="#666666") +
  scale_y_continuous(expand=c(0,0)) +
  xlab("dS") +
  ylab("# of genes") +
  bartheme()
print(ds_p)
# Distribution of dS when using gene trees
dn_p = ggplot(gene_rates, aes(x=dn)) +
  geom_histogram(bins=50, fill=corecol(pal="wilke", numcol=1), color="#666666") +
  scale_y_continuous(expand=c(0,0)) +
  xlab("dN") +
  ylab("# of genes") +
  bartheme()
print(dn_p)
# Distribution of dN when using gene trees
ds_filter_level = quantile(gene_rates$ds, 0.98)
#ds_filter_level = 0.03

ds_filter = subset(gene_rates, ds > ds_filter_level)$file
# Get a list of genes to filter out in subsequent analyses based on dS

print(paste("Removing", length(ds_filter), "genes with dS above", ds_filter_level, "from subsequent analyses."))
## [1] "Removing 236 genes with dS above 0.0338467469553527 from subsequent analyses."
#write.csv(ds_filter, file="../../data/rates/full-coding-mg94-local-ds-filter-0.95quant.csv", row.names=F)

< Back to summary

5 Calculation substitution rates per branch in the presence of gene tree discordance

5.1 Branch presence

Because we used the gene trees, in order to quantify rates on species tree branches we first needed to check whether branches in the species tree exist in a given gene tree.

This resulted in three categories for a species tree branch in a given gene tree:

  1. Full clade: All species in the clade that descends from the branch in the species tree are present as a monophyletic split in the gene tree.
  2. Parital clade: Not all species in the clade that descends from the branch in the species tree are present in the gene tree, but the ones that are present form a monophyletic split.
  3. Discordant/missing clade: Either the species in the clade that descends from the branch in the species tree do not form a monophyletic split in this gene tree (discordant) or ALL species in this clade are missing from this gene tree (missing)

Average rates are then calculated as (for dS, for example):

\[\frac{\sum_{i=1}^{n}\text{branch dS}_i}{n}\]

Where:

  • \(n = \text{# full clade genes} + \text{# partial clade genes}\) for this branch

5.1.1 Species tree branch presence/absence per gene

branch_rates = read.csv(branch_rates_file, header=T)
# Read the branch rates data

names(branch_rates)[1] = "tp"
cols_to_na = names(branch_rates)[5:20]
for(col in cols_to_na){
  branch_rates[branch_rates$tp %in% exclude_branches,][[col]] = NA
}
# For branches that we want to exclude for counting, convert
# columns with counts to NA

uniq_info_cols = names(tree_info)[!(names(tree_info) %in% names(branch_rates))] # get non common names
uniq_info_cols = c(uniq_info_cols,"tp") # appending key parameter
# Get a list of columns from the tree_info df to join to the tree rates df

branch_rates = branch_rates %>% left_join((tree_info %>% select(uniq_info_cols)), by="tp")
# Select the columns from tree_info and join to tree_rates, merging by clade
# https://stackoverflow.com/a/61628157

branch_rates = branch_rates[order(branch_rates$node), ]
# Re-order the rows by the R node

full_clade = select(branch_rates, clade, node.type, num.genes.full)
full_clade$label = "Full clade"
names(full_clade)[3] = "num.genes"

partial_clade = select(branch_rates, clade, node.type, num.genes.partial)
partial_clade$label = "Partial clade"
names(partial_clade)[3] = "num.genes"

descendant_counted = select(branch_rates, clade, node.type, num.genes.descendant.counted)
descendant_counted$label = "Descendant counted"
names(descendant_counted)[3] = "num.genes"

discordant_clade = select(branch_rates, clade, node.type, num.genes.discordant)
discordant_clade$label = "Discordant clade"
names(discordant_clade)[3] = "num.genes"

no_clade = select(branch_rates, clade, node.type, num.genes.missing)
no_clade$label = "Missing clade"
names(no_clade)[3] = "num.genes"
# Subset each clade count column to add a label

clade_counts = rbind(full_clade, partial_clade, descendant_counted, discordant_clade, no_clade)
# Convert branch categories to long format

clade_counts$label = factor(clade_counts$label, levels=c("Full clade", "Partial clade", "Descendant counted", "Discordant clade", "Missing clade"))
# Factorize the labels in order

branch_counts = ggplot(clade_counts, aes(x=label, y=num.genes, group=label, color=node.type)) +
  geom_quasirandom(size=2, width=0.25, alpha=0.25) +
  geom_boxplot(outlier.shape=NA, alpha=0.15, width=0.5, color="#666666") +
  ylab("# of genes") +
  xlab("Species tree\nbranch classification") +
  bartheme() +
  theme(axis.text.x = element_text(angle=25, hjust=1)) +
  guides(colour=guide_legend(override.aes=list(alpha=1)))
print(branch_counts)

5.1.2 Number of genes per branch

branch_rates$num.genes.present = branch_rates$num.genes.full + branch_rates$num.genes.partial
# Sum the two columns that indicate a clade is present in a gene

presence_dist = ggplot(branch_rates, aes(x=num.genes.present)) +
  geom_histogram(bins=50, fill=corecol(pal="wilke", numcol=1, offset=1), color="#ececec") +
  scale_y_continuous(expand=c(0,0)) +
  xlab("Genes per branch") +
  ylab("# of branches") +
  bartheme()
print(presence_dist)

t_data = data.frame("Stat"=c("Branch with most genes", "Branch with fewest genes", "Median genes per branch", "Mean genes per branch"), 
                    "Branch label"=c(branch_rates$tp[branch_rates$num.genes.present==max(branch_rates$num.genes.present, na.rm=T)][3], branch_rates$tp[branch_rates$num.genes.present==min(branch_rates$num.genes.present, na.rm=T)][6],"NA", "NA"), 
                    "Num genes"=c(branch_rates$num.genes.present[branch_rates$num.genes.present==max(branch_rates$num.genes.present, na.rm=T)][3], branch_rates$num.genes.present[branch_rates$num.genes.present==min(branch_rates$num.genes.present, na.rm=T)][6],
                                  median(branch_rates$num.genes.present, na.rm=T),
                                  mean(branch_rates$num.genes.present, na.rm=T)
                                  )
                    )


t_data %>% kable(caption="Branch statistics") %>% kable_styling(bootstrap_options=c("striped", "condensed", "responsive"), full_width=F)
Branch statistics
Stat Branch.label Num.genes
Branch with most genes mm10 11793.000
Branch with fewest genes <31> 233.000
Median genes per branch NA 7506.000
Mean genes per branch NA 6756.251

5.1.3 gCF and branch presence

These measures are highly correlated with gene concordance factors:

branch_rates$clade.perc = (branch_rates$num.genes.full + branch_rates$num.genes.partial) / (branch_rates$num.genes.full + branch_rates$num.genes.partial + branch_rates$num.genes.descendant.counted + branch_rates$num.genes.discordant + branch_rates$num.genes.missing)

p = ggplot(branch_rates, aes(x=gcf, y=clade.perc)) +
  geom_point(size=2, alpha=0.4, color="#333333") +
  geom_smooth(method="lm", se=F, linetype="dashed", color="#920000") +
  xlab("gCF") + 
  ylab("% of genes with clade present") + 
  bartheme() +
  theme(legend.position="none")
print(p)

5.2 Calculating branch rates

To control for the fact that different branches will be present in different numbers of genes, we can calculate average rates per branch by summing the raw counts of the number of sites and the number of substitutions across all genes in which that branch is present as a full or partial clade.

For a given branch, \(b\):

\[dN_b = \frac{\sum_{g \in G_b}N_g}{\sum_{g \in G_b}EN_g}\]

and

\[dS_b = \frac{\sum_{g \in G_b}S_g}{\sum_{g \in G_b}ES_g}\]

where \(G_b\) is the set of genes that contain branch \(b\). Then,

\[\omega_b = \frac{dN_b}{dS_b}\]

6 Substitution rates per branch (all genes)

6.1 dN and dS by branch

This results in the following distributions for average rates across branches (green lines indicating 95th percentile of each rate):

ds_95_perc = quantile(branch_rates$dS, 0.95, na.rm=T)
dn_95_perc = quantile(branch_rates$dN, 0.95, na.rm=T)

p = ggplot(branch_rates, aes(x=dS, y=dN, color=node.type)) +
  geom_point(size=2, alpha=0.2) +
  geom_text_repel(aes(label=ifelse(dS>ds_95_perc | dN>dn_95_perc, as.character(node), '')), show_guide=F) +
  #(aes(label=ifelse(avg.dN>dn_95_perc, as.character(node), '')), show_guide=F) +
  geom_vline(xintercept=ds_95_perc, linetype="dashed", color=corecol(numcol=1, offset=6)) +
  geom_hline(yintercept=dn_95_perc, linetype="dashed", color=corecol(numcol=1, offset=6)) +
  #geom_smooth(method="lm", se=F, ) +
  xlab("dS per branch") + 
  ylab("dN per branch") + 
  bartheme() +
  theme(legend.position="bottom") +
  guides(colour = guide_legend(override.aes = list(alpha = 1)))
p = ggExtra::ggMarginal(p, type="histogram", bins=50, fill=corecol(pal="wilke", numcol=1, offset=1), color="#666666")
print(p)

branch_rates$ds.outlier = ifelse(branch_rates$dS>ds_95_perc,branch_rates$tp,'')
branch_rates$dn.outlier = ifelse(branch_rates$dN>dn_95_perc,branch_rates$tp,'')

6.2 dS tree

h = corecol(numcol=1, pal="wilke", offset=1)
l = corecol(numcol=1, offset=1)

rate_tree = ggtree(rodent_tree, size=0.8, ladderize=F, aes(color=log(branch_rates$dS))) +
  scale_color_continuous(name='log dS', low=l, high=h) +
  xlim(0, xmax) +
  geom_tiplab(color="#333333", fontface='italic', size=2) +
  theme(legend.position=c(0.05,0.9)) +
  geom_label(aes(x=branch, label=ifelse(branch_rates$dS>ds_95_perc,as.character(node),'')), label.size=NA, fill="transparent")
  #geom_text(aes(label=node), hjust=-.1, color="#006ddb")
#geom_nodepoint(color="#666666", alpha=0.85, size=4)
print(rate_tree)

6.3 dN tree

h = corecol(numcol=1, pal="wilke", offset=1)
l = corecol(numcol=1, offset=1)

rate_tree = ggtree(rodent_tree, size=0.8, ladderize=F, aes(color=log(branch_rates$dN))) +
  scale_color_continuous(name='log dN', low=l, high=h) +
  xlim(0, xmax) +
  geom_tiplab(color="#333333", fontface='italic', size=2) +
  theme(legend.position=c(0.05,0.9)) +
  geom_label(aes(x=branch, label=ifelse(branch_rates$dN > dn_95_perc, as.character(node) ,'')), label.size=NA, fill="transparent")
#geom_text(aes(label=rodent_data$support), hjust=-.1, color="#006ddb") +
#geom_nodepoint(color="#666666", alpha=0.85, size=4)
print(rate_tree)

6.4 dN/dS distribution

dnds_p = ggplot(branch_rates, aes(x=dNdS)) +
  geom_histogram(bins=50, fill=corecol(pal="wilke", numcol=1), color="#666666") +
  scale_y_continuous(expand=c(0,0)) +
  xlab("dN/dS") +
  ylab("# of branches") +
  bartheme()
print(dnds_p)

# Distribution of dN/dS when using gene trees

dnds_95_perc = quantile(branch_rates$dNdS, 0.95, na.rm=T)
branch_rates$dnds.outlier = ifelse(branch_rates$dNdS>dnds_95_perc,branch_rates$node,'')

6.5 dN/dS tree

h = corecol(numcol=1, pal="wilke", offset=1)
l = corecol(numcol=1, offset=1)

rate_tree = ggtree(rodent_tree, size=0.8, ladderize=F, aes(color=log(branch_rates$dNdS))) +
  scale_color_continuous(name='log dN/dS', low=l, high=h) +
  xlim(0, xmax) +
  geom_tiplab(color="#333333", fontface='italic', size=2) +
  theme(legend.position=c(0.05,0.9)) +
  geom_label(aes(x=branch, label=ifelse(branch_rates$dNdS>dnds_95_perc ,as.character(node), '')), label.size=NA, fill="transparent")
#geom_text(aes(label=rodent_data$support), hjust=-.1, color="#006ddb") +
#geom_nodepoint(color="#666666", alpha=0.85, size=4)
print(rate_tree)

6.6 Substitution rates and discordance

6.6.1 dS vs. concordance factors

Only branches with avg. dS < 0.05

ds_gcf_p = ggplot(subset(branch_rates, node.type!="ROOT" & dS < ds_95_perc), aes(x=dS, y=gcf)) +
  geom_point(size=3, alpha=0.5) +
  #geom_text_repel(aes(label=ifelse(avg.ds>0.2|avg.dn>0.01,as.character(node),'')), show_guide=F) +
  #geom_smooth(method="lm", se=F, ) +
  xlab("dS per branch") + 
  ylab("gCF per branch") + 
  bartheme()
  #theme(legend.position="bottom") +
  #guides(colour = guide_legend(override.aes = list(alpha = 1)))
ds_gcf_p = ggExtra::ggMarginal(ds_gcf_p, type="histogram", bins=50, fill=corecol(pal="wilke", numcol=1, offset=4), color="#666666")

ds_scf_p = ggplot(subset(branch_rates, node.type!="ROOT" & dS < ds_95_perc), aes(x=dS, y=scf)) +
  geom_point(size=3, alpha=0.5) +
  #geom_text_repel(aes(label=ifelse(avg.ds>0.2|avg.dn>0.01,as.character(node),'')), show_guide=F) +
  #geom_smooth(method="lm", se=F, ) +
  xlab("dS per branch") + 
  ylab("sCF per branch") + 
  bartheme()
  #theme(legend.position="bottom") +
  #guides(colour = guide_legend(override.aes = list(alpha = 1)))
ds_scf_p = ggExtra::ggMarginal(ds_scf_p, type="histogram", bins=50, fill=corecol(pal="wilke", numcol=1, offset=5), color="#666666")

p = plot_grid(ds_gcf_p, ds_scf_p, ncol=2)
print(p)

6.6.2 dN vs. concordance factors

Only branches with avg. dN < 0.01

dn_gcf_p = ggplot(subset(branch_rates, node.type!="ROOT" & dN < dn_95_perc), aes(x=dN, y=gcf)) +
  geom_point(size=3, alpha=0.5) +
  #geom_text_repel(aes(label=ifelse(avg.ds>0.2|avg.dn>0.01,as.character(node),'')), show_guide=F) +
  #geom_smooth(method="lm", se=F, ) +
  xlab("dN per branch") + 
  ylab("gCF per branch") + 
  bartheme()
  #theme(legend.position="bottom") +
  #guides(colour = guide_legend(override.aes = list(alpha = 1)))
dn_gcf_p = ggExtra::ggMarginal(dn_gcf_p, type="histogram", bins=50, fill=corecol(pal="wilke", numcol=1, offset=4), color="#666666")

dn_scf_p = ggplot(subset(branch_rates, node.type!="ROOT" & dN < dn_95_perc), aes(x=dN, y=scf)) +
  geom_point(size=3, alpha=0.5) +
  #geom_text_repel(aes(label=ifelse(avg.ds>0.2|avg.dn>0.01,as.character(node),'')), show_guide=F) +
  #geom_smooth(method="lm", se=F, ) +
  xlab("dN per branch") + 
  ylab("sCF per branch") + 
  bartheme()
  #theme(legend.position="bottom") +
  #guides(colour = guide_legend(override.aes = list(alpha = 1)))
dn_scf_p = ggExtra::ggMarginal(dn_scf_p, type="histogram", bins=50, fill=corecol(pal="wilke", numcol=1, offset=5), color="#666666")

p = plot_grid(dn_gcf_p, dn_scf_p, ncol=2)
print(p)

6.6.3 dN/dS vs. concordance factors

Only branches with avg. dN/dS < 0.5

dnds_gcf_p = ggplot(subset(branch_rates, node.type!="ROOT" & dNdS < 0.5), aes(x=dNdS, y=gcf)) +
  geom_point(size=3, alpha=0.5) +
  #geom_text_repel(aes(label=ifelse(avg.ds>0.2|avg.dn>0.01,as.character(node),'')), show_guide=F) +
  #geom_smooth(method="lm", se=F, ) +
  xlab("dN/dS per branch") + 
  ylab("gCF per branch") + 
  bartheme()
  #theme(legend.position="bottom") +
  #guides(colour = guide_legend(override.aes = list(alpha = 1)))
dnds_gcf_p = ggExtra::ggMarginal(dnds_gcf_p, type="histogram", bins=50, fill=corecol(pal="wilke", numcol=1, offset=4), color="#666666")

dnds_scf_p = ggplot(subset(branch_rates, node.type!="ROOT" & dNdS < 0.5), aes(x=dNdS, y=scf)) +
  geom_point(size=3, alpha=0.5) +
  #geom_text_repel(aes(label=ifelse(avg.ds>0.2|avg.dn>0.01,as.character(node),'')), show_guide=F) +
  #geom_smooth(method="lm", se=F, ) +
  xlab("dN/dS per branch") + 
  ylab("sCF per branch") + 
  bartheme()
  #theme(legend.position="bottom") +
  #guides(colour = guide_legend(override.aes = list(alpha = 1)))
dnds_scf_p = ggExtra::ggMarginal(dnds_scf_p, type="histogram", bins=50, fill=corecol(pal="wilke", numcol=1, offset=5), color="#666666")

p = plot_grid(dnds_gcf_p, dnds_scf_p, ncol=2)
print(p)

< Back to summary

6.7 Substitution rates and colonization branches (all genes)

col_branches = read.csv(col_file, header=F, comment.char="#")
names(col_branches) = c("tp")

branch_rates$col.branch = "Other"

branch_rates$col.branch[branch_rates$tp %in% col_branches$tp] = "Colonization"

#tree_info$col.desc.branch = "N"

for(i in 1:nrow(branch_rates)){
  if(branch_rates[i,]$node.type == "internal" && branch_rates[i,]$col.branch == "Colonization"){
    cur_desc = getDescendants(rodent_tree, branch_rates[i,]$node)
    branch_rates$col.branch[branch_rates$node==cur_desc[1]] = "Descendant"
    branch_rates$col.branch[branch_rates$node==cur_desc[2]] = "Descendant"
  }
}

6.7.1 Tree with colonization branches labeled

h = corecol(numcol=1, pal="wilke", offset=3)
l = corecol(numcol=1, offset=3)
# Colors

col_tree = ggtree(rodent_tree, size=0.8, ladderize=F, aes(color=branch_rates$col.branch)) +
  scale_color_manual(name='Branch partition', values=corecol(pal="wilke", numcol=3)) +
  xlim(0, xmax) +
  geom_tiplab(color="#333333", fontface='italic', size=2) +
  theme(legend.position=c(0.15,0.9))
print(col_tree)

if(save_tree_fig){
  gcf_tree = gcf_tree + geom_text(aes(x=branch, label=ifelse(branch_rates$node.type=="internal",as.character(node), ''), label.size=NA, fill="transparent"), size=2, vjust=-0.2)
  tree_outfile = paste("../../data/trees/", tree_type, "-gcf-tree-PARED-gcf50.pdf", sep="")
  ggsave(tree_outfile, gcf_tree, width=8, height=16, unit="in")
}
# Colonization branch tree

6.7.2 dS by colonization branch

#anc_info = subset(anc_info_w_root, node.type != "root")

col_ds = subset(select(branch_rates, clade, node.type, col.branch, dS), col.branch == "Colonization")
col_ds$label = "Colonization"
#names(full_clade)[3] = "num.genes"

desc_ds = subset(select(branch_rates, clade, node.type, col.branch, dS), col.branch == "Descendant")
desc_ds$label = "Descendant"

other_ds = subset(select(branch_rates, clade, node.type, col.branch, dS), col.branch == "Other")
other_ds$label = "Other"

ds_df = rbind(col_ds, desc_ds, other_ds)
# Convert branch categories to long format

ds_df$label = factor(ds_df$label, levels=c("Colonization", "Descendant", "Other"))

x_comps = list(c("Colonization", "Descendant"), c("Colonization", "Other"), c("Descendant", "Other"))

branch_ps_counts = ggplot(ds_df, aes(x=label, y=dS, group=label, color=node.type)) +
  geom_quasirandom(size=2, width=0.25, alpha=0.25) +
  geom_boxplot(outlier.shape=NA, alpha=0.15, width=0.5, color="#666666") +
  geom_signif(comparisons=x_comps, map_signif_level=TRUE, textsize=4, size=1, step_increase=0.12, margin_top=0.1) +
  ylab("dS") +
  xlab("Species tree\nbranch partition") +
  bartheme() +
  theme(axis.text.x = element_text(angle=25, hjust=1)) +
  guides(colour=guide_legend(override.aes=list(alpha=1)))
print(branch_ps_counts)

6.7.3 dN by colonization branch

#anc_info = subset(anc_info_w_root, node.type != "root")

col_dn = subset(select(branch_rates, clade, node.type, col.branch, dN), col.branch == "Colonization")
col_dn$label = "Colonization"
#names(full_clade)[3] = "num.genes"

desc_dn = subset(select(branch_rates, clade, node.type, col.branch, dN), col.branch == "Descendant")
desc_dn$label = "Descendant"

other_dn = subset(select(branch_rates, clade, node.type, col.branch, dN), col.branch == "Other")
other_dn$label = "Other"

dn_df = rbind(col_dn, desc_dn, other_dn)
# Convert branch categories to long format

dn_df$label = factor(dn_df$label, levels=c("Colonization", "Descendant", "Other"))

x_comps = list(c("Colonization", "Descendant"), c("Colonization", "Other"), c("Descendant", "Other"))

branch_ps_counts = ggplot(dn_df, aes(x=label, y=dN, group=label, color=node.type)) +
  geom_quasirandom(size=2, width=0.25, alpha=0.25) +
  geom_boxplot(outlier.shape=NA, alpha=0.15, width=0.5, color="#666666") +
  geom_signif(comparisons=x_comps, map_signif_level=TRUE, textsize=4, size=1, step_increase=0.12, margin_top=0.1) +
  ylab("dN") +
  xlab("Species tree\nbranch partition") +
  bartheme() +
  theme(axis.text.x = element_text(angle=25, hjust=1)) +
  guides(colour=guide_legend(override.aes=list(alpha=1)))
print(branch_ps_counts)

6.7.4 dN/dS by colonization branch

#anc_info = subset(anc_info_w_root, node.type != "root")

col_dnds = subset(select(branch_rates, clade, node.type, col.branch, dNdS), col.branch == "Colonization")
col_dnds$label = "Colonization"
#names(full_clade)[3] = "num.genes"

desc_dnds = subset(select(branch_rates, clade, node.type, col.branch, dNdS), col.branch == "Descendant")
desc_dnds$label = "Descendant"

other_dnds = subset(select(branch_rates, clade, node.type, col.branch, dNdS), col.branch == "Other")
other_dnds$label = "Other"

dnds_df = rbind(col_dnds, desc_dnds, other_dnds)
# Convert branch categories to long format

dnds_df$label = factor(dnds_df$label, levels=c("Colonization", "Descendant", "Other"))

x_comps = list(c("Colonization", "Descendant"), c("Colonization", "Other"), c("Descendant", "Other"))

branch_ps_counts = ggplot(dnds_df, aes(x=label, y=dNdS, group=label, color=node.type)) +
  geom_quasirandom(size=2, width=0.25, alpha=0.25) +
  geom_boxplot(outlier.shape=NA, alpha=0.15, width=0.5, color="#666666") +
  geom_signif(comparisons=x_comps, map_signif_level=TRUE, textsize=4, size=1, step_increase=0.12, margin_top=0.1) +
  ylab("dN/dS") +
  xlab("Species tree\nbranch partition") +
  bartheme() +
  theme(axis.text.x = element_text(angle=25, hjust=1)) +
  guides(colour=guide_legend(override.aes=list(alpha=1)))
print(branch_ps_counts)

< Back to summary

7 Substitution rates (1072 morphofacial genes)

7.1 Branch presence

#anc_info = subset(anc_info_w_root, node.type != "root")

branch_rates_mf = read.csv(branch_rates_file_mf, header=T, comment.char="#")

names(branch_rates_mf)[1] = "tp"
cols_to_na = names(branch_rates_mf)[5:20]
for(col in cols_to_na){
  branch_rates_mf[branch_rates_mf$tp %in% exclude_branches,][[col]] = NA
}
# For branches that we want to exclude for counting, convert
# columns with counts to NA

uniq_info_cols = names(tree_info)[!(names(tree_info) %in% names(branch_rates_mf))] # get non common names
uniq_info_cols = c(uniq_info_cols,"tp") # appending key parameter
# Get a list of columns from the tree_info df to join to the tree rates df

branch_rates_mf = branch_rates_mf %>% left_join((tree_info %>% select(uniq_info_cols)), by="tp")
# Select the columns from tree_info and join to tree_rates, merging by clade
# https://stackoverflow.com/a/61628157

branch_rates_mf = branch_rates_mf[order(branch_rates_mf$node), ]
# Re-order the rows by the R node

full_clade = select(branch_rates_mf, clade, node.type, num.genes.full)
full_clade$label = "Full clade"
names(full_clade)[3] = "num.genes"

partial_clade = select(branch_rates_mf, clade, node.type, num.genes.partial)
partial_clade$label = "Partial clade"
names(partial_clade)[3] = "num.genes"

descendant_counted = select(branch_rates_mf, clade, node.type, num.genes.descendant.counted)
descendant_counted$label = "Descendant counted"
names(descendant_counted)[3] = "num.genes"

discordant_clade = select(branch_rates_mf, clade, node.type, num.genes.discordant)
discordant_clade$label = "Discordant clade"
names(discordant_clade)[3] = "num.genes"

no_clade = select(branch_rates_mf, clade, node.type, num.genes.missing)
no_clade$label = "Missing clade"
names(no_clade)[3] = "num.genes"
# Subset each clade count column to add a label

clade_counts = rbind(full_clade, partial_clade, descendant_counted, discordant_clade, no_clade)
# Convert branch categories to long format

clade_counts$label = factor(clade_counts$label, levels=c("Full clade", "Partial clade", "Descendant counted", "Discordant clade", "Missing clade"))
# Factorize the labels in order

branch_counts = ggplot(clade_counts, aes(x=label, y=num.genes, group=label, color=node.type)) +
  geom_quasirandom(size=2, width=0.25, alpha=0.25) +
  geom_boxplot(outlier.shape=NA, alpha=0.15, width=0.5, color="#666666") +
  ylab("# of genes") +
  xlab("Species tree\nbranch classification") +
  bartheme() +
  theme(axis.text.x = element_text(angle=25, hjust=1)) +
  guides(colour=guide_legend(override.aes=list(alpha=1)))
print(branch_counts)

7.2 Tree with OU shift branches labeled

morpho_branches = read.csv(morpho_file, header=F, comment.char="#")
names(morpho_branches) = c("tp")

branch_rates$morpho.branch = "No OU shift"
branch_rates$morpho.branch[branch_rates$tp %in% morpho_branches$tp] = "OU shift"

branch_rates_mf$morpho.branch = "No OU shift"
branch_rates_mf$morpho.branch[branch_rates_mf$tp %in% morpho_branches$tp] = "OU shift"

h = corecol(numcol=1, pal="wilke", offset=3)
l = corecol(numcol=1, offset=3)
# Colors

col_tree = ggtree(rodent_tree, size=0.8, ladderize=F, aes(color=branch_rates_mf$morpho.branch)) +
  scale_color_manual(name='Branch partition', values=corecol(numcol=2)) +
  xlim(0, xmax) +
  geom_tiplab(color="#333333", fontface='italic', size=2) +
  theme(legend.position=c(0.15,0.9))
print(col_tree)

if(save_tree_fig){
  gcf_tree = gcf_tree + geom_text(aes(x=branch, label=ifelse(branch_rates$node.type=="internal",as.character(node), ''), label.size=NA, fill="transparent"), size=2, vjust=-0.2)
  tree_outfile = paste("../../data/trees/", tree_type, "-gcf-tree-PARED-gcf50.pdf", sep="")
  ggsave(tree_outfile, gcf_tree, width=8, height=16, unit="in")
}
# OU shift branch tree

7.3 dS

morpho_ds_mf = subset(select(branch_rates_mf, clade, node.type, morpho.branch, dS), morpho.branch == "OU shift")
morpho_ds_mf$label = "OU shift (MF genes)"
#names(full_clade)[3] = "num.genes"

other_ds_mf = subset(select(branch_rates_mf, clade, node.type, morpho.branch, dS), morpho.branch == "No OU shift")
other_ds_mf$label = "No OU shift (MF genes)"

morpho_ds_all = subset(select(branch_rates, clade, node.type, morpho.branch, dS), morpho.branch == "OU shift")
morpho_ds_all$label = "OU shift (All genes)"
#names(full_clade)[3] = "num.genes"

other_ds_all = subset(select(branch_rates, clade, node.type, morpho.branch, dS), morpho.branch == "No OU shift")
other_ds_all$label = "No OU shift (All genes)"

ds_df = rbind(morpho_ds_all, other_ds_all, morpho_ds_mf, other_ds_mf)
# Convert branch categories to long format

ds_df$label = factor(ds_df$label, levels=c("OU shift (All genes)", "No OU shift (All genes)", "OU shift (MF genes)", "No OU shift (MF genes)"))

x_comps = list(c("OU shift (All genes)", "No OU shift (All genes)"), c("OU shift (MF genes)", "No OU shift (MF genes)"), c("OU shift (All genes)", "OU shift (MF genes)"))

morpho_branch_ds = ggplot(ds_df, aes(x=label, y=dS, group=label, color=node.type)) +
  geom_quasirandom(size=2, width=0.25, alpha=0.25) +
  geom_boxplot(outlier.shape=NA, alpha=0.15, width=0.5, color="#666666") +
  geom_signif(comparisons=x_comps, map_signif_level=TRUE, textsize=4, size=1, step_increase=0.12, margin_top=0.1) +
  ylab("dS") +
  xlab("Species tree\nbranch partition") +
  bartheme() +
  theme(axis.text.x = element_text(angle=25, hjust=1)) +
  guides(colour=guide_legend(override.aes=list(alpha=1)))
print(morpho_branch_ds)

7.4 dN

morpho_dn_mf = subset(select(branch_rates_mf, clade, node.type, morpho.branch, dN), morpho.branch == "OU shift")
morpho_dn_mf$label = "OU shift (MF genes)"
#names(full_clade)[3] = "num.genes"

other_dn_mf = subset(select(branch_rates_mf, clade, node.type, morpho.branch, dN), morpho.branch == "No OU shift")
other_dn_mf$label = "No OU shift (MF genes)"

morpho_dn_all = subset(select(branch_rates, clade, node.type, morpho.branch, dN), morpho.branch == "OU shift")
morpho_dn_all$label = "OU shift (All genes)"
#names(full_clade)[3] = "num.genes"

other_dn_all = subset(select(branch_rates, clade, node.type, morpho.branch, dN), morpho.branch == "No OU shift")
other_dn_all$label = "No OU shift (All genes)"

dn_df = rbind(morpho_dn_all, other_dn_all, morpho_dn_mf, other_dn_mf)
# Convert branch categories to long format

dn_df$label = factor(dn_df$label, levels=c("OU shift (All genes)", "No OU shift (All genes)", "OU shift (MF genes)", "No OU shift (MF genes)"))

x_comps = list(c("OU shift (All genes)", "No OU shift (All genes)"), c("OU shift (MF genes)", "No OU shift (MF genes)"), c("OU shift (All genes)", "OU shift (MF genes)"))

morpho_branch_dn = ggplot(dn_df, aes(x=label, y=dN, group=label, color=node.type)) +
  geom_quasirandom(size=2, width=0.25, alpha=0.25) +
  geom_boxplot(outlier.shape=NA, alpha=0.15, width=0.5, color="#666666") +
  geom_signif(comparisons=x_comps, map_signif_level=TRUE, textsize=4, size=1, step_increase=0.12, margin_top=0.1) +
  ylab("dN") +
  xlab("Species tree\nbranch partition") +
  bartheme() +
  theme(axis.text.x = element_text(angle=25, hjust=1)) +
  guides(colour=guide_legend(override.aes=list(alpha=1)))
print(morpho_branch_dn)

7.5 dN/dS

morpho_dnds_mf = subset(select(branch_rates_mf, clade, node.type, morpho.branch, dNdS), morpho.branch == "OU shift")
morpho_dnds_mf$label = "OU shift (MF genes)"
#names(full_clade)[3] = "num.genes"

other_dnds_mf = subset(select(branch_rates_mf, clade, node.type, morpho.branch, dNdS), morpho.branch == "No OU shift")
other_dnds_mf$label = "No OU shift (MF genes)"

morpho_dnds_all = subset(select(branch_rates, clade, node.type, morpho.branch, dNdS), morpho.branch == "OU shift")
morpho_dnds_all$label = "OU shift (All genes)"
#names(full_clade)[3] = "num.genes"

other_dnds_all = subset(select(branch_rates, clade, node.type, morpho.branch, dNdS), morpho.branch == "No OU shift")
other_dnds_all$label = "No OU shift (All genes)"

dnds_df = rbind(morpho_dnds_all, other_dnds_all, morpho_dnds_mf, other_dnds_mf)
# Convert branch categories to long format

dnds_df$label = factor(dnds_df$label, levels=c("OU shift (All genes)", "No OU shift (All genes)", "OU shift (MF genes)", "No OU shift (MF genes)"))

x_comps = list(c("OU shift (All genes)", "No OU shift (All genes)"), c("OU shift (MF genes)", "No OU shift (MF genes)"), c("OU shift (All genes)", "OU shift (MF genes)"), c("No OU shift (All genes)", "No OU shift (MF genes)"))

morpho_branch_dnds = ggplot(dnds_df, aes(x=label, y=dNdS, group=label, color=node.type)) +
  geom_quasirandom(size=2, width=0.25, alpha=0.25) +
  geom_boxplot(outlier.shape=NA, alpha=0.15, width=0.5, color="#666666") +
  geom_signif(comparisons=x_comps, map_signif_level=TRUE, textsize=4, size=1, step_increase=0.12, margin_top=0.1) +
  ylab("dN/dS") +
  xlab("Species tree\nbranch partition") +
  bartheme() +
  theme(axis.text.x = element_text(angle=25, hjust=1)) +
  guides(colour=guide_legend(override.aes=list(alpha=1)))
print(morpho_branch_dnds)

< Back to summary

8 Substitution rates (108 arid genes)

8.1 Branch presence

#anc_info = subset(anc_info_w_root, node.type != "root")

branch_rates_arid = read.csv(branch_rates_file_arid, header=T, comment.char="#")

names(branch_rates_arid)[1] = "tp"
cols_to_na = names(branch_rates_arid)[5:20]
for(col in cols_to_na){
  branch_rates_arid[branch_rates_arid$tp %in% exclude_branches,][[col]] = NA
}
# For branches that we want to exclude for counting, convert
# columns with counts to NA

uniq_info_cols = names(tree_info)[!(names(tree_info) %in% names(branch_rates_arid))] # get non common names
uniq_info_cols = c(uniq_info_cols,"tp") # appending key parameter
# Get a list of columns from the tree_info df to join to the tree rates df

branch_rates_arid = branch_rates_arid %>% left_join((tree_info %>% select(uniq_info_cols)), by="tp")
# Select the columns from tree_info and join to tree_rates, merging by clade
# https://stackoverflow.com/a/61628157

branch_rates_arid = branch_rates_arid[order(branch_rates_arid$node), ]
# Re-order the rows by the R node

full_clade = select(branch_rates_arid, clade, node.type, num.genes.full)
full_clade$label = "Full clade"
names(full_clade)[3] = "num.genes"

partial_clade = select(branch_rates_arid, clade, node.type, num.genes.partial)
partial_clade$label = "Partial clade"
names(partial_clade)[3] = "num.genes"

descendant_counted = select(branch_rates_arid, clade, node.type, num.genes.descendant.counted)
descendant_counted$label = "Descendant counted"
names(descendant_counted)[3] = "num.genes"

discordant_clade = select(branch_rates_arid, clade, node.type, num.genes.discordant)
discordant_clade$label = "Discordant clade"
names(discordant_clade)[3] = "num.genes"

no_clade = select(branch_rates_arid, clade, node.type, num.genes.missing)
no_clade$label = "Missing clade"
names(no_clade)[3] = "num.genes"
# Subset each clade count column to add a label

clade_counts = rbind(full_clade, partial_clade, descendant_counted, discordant_clade, no_clade)
# Convert branch categories to long format

clade_counts$label = factor(clade_counts$label, levels=c("Full clade", "Partial clade", "Descendant counted", "Discordant clade", "Missing clade"))
# Factorize the labels in order

branch_counts = ggplot(clade_counts, aes(x=label, y=num.genes, group=label, color=node.type)) +
  geom_quasirandom(size=2, width=0.25, alpha=0.25) +
  geom_boxplot(outlier.shape=NA, alpha=0.15, width=0.5, color="#666666") +
  ylab("# of genes") +
  xlab("Species tree\nbranch classification") +
  bartheme() +
  theme(axis.text.x = element_text(angle=25, hjust=1)) +
  guides(colour=guide_legend(override.aes=list(alpha=1)))
print(branch_counts)

8.2 dS

# col_branches = read.csv(col_file, header=F, comment.char="#")
# names(col_branches) = c("tp")

branch_rates_arid$col.branch = "Other"

branch_rates_arid$col.branch[branch_rates_arid$tp %in% col_branches$tp] = "Colonization"

#tree_info$col.desc.branch = "N"

for(i in 1:nrow(branch_rates_arid)){
  if(branch_rates[i,]$node.type == "internal" && branch_rates_arid[i,]$col.branch == "Colonization"){
    cur_desc = getDescendants(rodent_tree, branch_rates_arid[i,]$node)
    branch_rates_arid$col.branch[branch_rates_arid$node==cur_desc[1]] = "Descendant"
    branch_rates_arid$col.branch[branch_rates_arid$node==cur_desc[2]] = "Descendant"
  }
}

col_ds_arid = subset(select(branch_rates_arid, clade, node.type, col.branch, dS), col.branch == "Colonization")
col_ds_arid$label = "Colonization (arid genes)"
#names(full_clade)[3] = "num.genes"

desc_ds_arid = subset(select(branch_rates_arid, clade, node.type, col.branch, dS), col.branch == "Descendant")
desc_ds_arid$label = "Descendant (arid genes)"

other_ds_arid = subset(select(branch_rates_arid, clade, node.type, col.branch, dS), col.branch == "Other")
other_ds_arid$label = "Other (arid genes)"

col_ds = subset(select(branch_rates, clade, node.type, col.branch, dS), col.branch == "Colonization")
col_ds$label = "Colonization (All genes)"
#names(full_clade)[3] = "num.genes"

desc_ds = subset(select(branch_rates, clade, node.type, col.branch, dS), col.branch == "Descendant")
desc_ds$label = "Descendant (All genes)"

other_ds = subset(select(branch_rates, clade, node.type, col.branch, dS), col.branch == "Other")
other_ds$label = "Other (All genes)"


ds_df = rbind(col_ds, desc_ds, other_ds, col_ds_arid, desc_ds_arid, other_ds_arid)
# Convert branch categories to long format

ds_df$label = factor(ds_df$label, levels=c("Colonization (All genes)", "Descendant (All genes)", "Other (All genes)", "Colonization (arid genes)", "Descendant (arid genes)", "Other (arid genes)"))

x_comps = list(c("Other (All genes)", "Other (arid genes)"), c("Colonization (All genes)", "Colonization (arid genes)"), c("Descendant (All genes)", "Descendant (arid genes)"))

branch_ps_counts = ggplot(ds_df, aes(x=label, y=dS, group=label, color=node.type)) +
  geom_quasirandom(size=2, width=0.25, alpha=0.25) +
  geom_boxplot(outlier.shape=NA, alpha=0.15, width=0.5, color="#666666") +
  geom_signif(comparisons=x_comps, map_signif_level=TRUE, textsize=4, size=1, step_increase=0.12, margin_top=0.1) +
  ylab("dS") +
  xlab("Species tree\nbranch partition") +
  bartheme() +
  theme(axis.text.x = element_text(angle=25, hjust=1)) +
  guides(colour=guide_legend(override.aes=list(alpha=1)))
print(branch_ps_counts)

8.3 dN

col_dn_arid = subset(select(branch_rates_arid, clade, node.type, col.branch, dN), col.branch == "Colonization")
col_dn_arid$label = "Colonization (arid genes)"
#names(full_clade)[3] = "num.genes"

desc_dn_arid = subset(select(branch_rates_arid, clade, node.type, col.branch, dN), col.branch == "Descendant")
desc_dn_arid$label = "Descendant (arid genes)"

other_dn_arid = subset(select(branch_rates_arid, clade, node.type, col.branch, dN), col.branch == "Other")
other_dn_arid$label = "Other (arid genes)"

col_dn = subset(select(branch_rates, clade, node.type, col.branch, dN), col.branch == "Colonization")
col_dn$label = "Colonization (All genes)"
#names(full_clade)[3] = "num.genes"

desc_dn = subset(select(branch_rates, clade, node.type, col.branch, dN), col.branch == "Descendant")
desc_dn$label = "Descendant (All genes)"

other_dn = subset(select(branch_rates, clade, node.type, col.branch, dN), col.branch == "Other")
other_dn$label = "Other (All genes)"


dn_df = rbind(col_dn, desc_dn, other_dn, col_dn_arid, desc_dn_arid, other_dn_arid)
# Convert branch categories to long format

dn_df$label = factor(ds_df$label, levels=c("Colonization (All genes)", "Descendant (All genes)", "Other (All genes)", "Colonization (arid genes)", "Descendant (arid genes)", "Other (arid genes)"))

x_comps = list(c("Other (All genes)", "Other (arid genes)"), c("Colonization (All genes)", "Colonization (arid genes)"), c("Descendant (All genes)", "Descendant (arid genes)"))

branch_ps_counts = ggplot(dn_df, aes(x=label, y=dN, group=label, color=node.type)) +
  geom_quasirandom(size=2, width=0.25, alpha=0.25) +
  geom_boxplot(outlier.shape=NA, alpha=0.15, width=0.5, color="#666666") +
  geom_signif(comparisons=x_comps, map_signif_level=TRUE, textsize=4, size=1, step_increase=0.12, margin_top=0.1) +
  ylab("dN") +
  xlab("Species tree\nbranch partition") +
  bartheme() +
  theme(axis.text.x = element_text(angle=25, hjust=1)) +
  guides(colour=guide_legend(override.aes=list(alpha=1)))
print(branch_ps_counts)

8.4 dN/dS

col_dnds_arid = subset(select(branch_rates_arid, clade, node.type, col.branch, dNdS), col.branch == "Colonization")
col_dnds_arid$label = "Colonization (arid genes)"
#names(full_clade)[3] = "num.genes"

desc_dnds_arid = subset(select(branch_rates_arid, clade, node.type, col.branch, dNdS), col.branch == "Descendant")
desc_dnds_arid$label = "Descendant (arid genes)"

other_dnds_arid = subset(select(branch_rates_arid, clade, node.type, col.branch, dNdS), col.branch == "Other")
other_dnds_arid$label = "Other (arid genes)"

col_dnds = subset(select(branch_rates, clade, node.type, col.branch, dNdS), col.branch == "Colonization")
col_dnds$label = "Colonization (All genes)"
#names(full_clade)[3] = "num.genes"

desc_dnds = subset(select(branch_rates, clade, node.type, col.branch, dNdS), col.branch == "Descendant")
desc_dnds$label = "Descendant (All genes)"

other_dnds = subset(select(branch_rates, clade, node.type, col.branch, dNdS), col.branch == "Other")
other_dnds$label = "Other (All genes)"


dnds_df = rbind(col_dnds, desc_dnds, other_dnds, col_dnds_arid, desc_dnds_arid, other_dnds_arid)
# Convert branch categories to long format

dnds_df$label = factor(ds_df$label, levels=c("Colonization (All genes)", "Descendant (All genes)", "Other (All genes)", "Colonization (arid genes)", "Descendant (arid genes)", "Other (arid genes)"))

x_comps = list(c("Other (All genes)", "Other (arid genes)"), c("Colonization (All genes)", "Colonization (arid genes)"), c("Descendant (All genes)", "Descendant (arid genes)"))

branch_ps_counts = ggplot(dnds_df, aes(x=label, y=dNdS, group=label, color=node.type)) +
  geom_quasirandom(size=2, width=0.25, alpha=0.25) +
  geom_boxplot(outlier.shape=NA, alpha=0.15, width=0.5, color="#666666") +
  geom_signif(comparisons=x_comps, map_signif_level=TRUE, textsize=4, size=1, step_increase=0.12, margin_top=0.1) +
  ylab("dN/dS") +
  xlab("Species tree\nbranch partition") +
  bartheme() +
  theme(axis.text.x = element_text(angle=25, hjust=1)) +
  guides(colour=guide_legend(override.aes=list(alpha=1)))
print(branch_ps_counts)

< Back to summary

9 Basic rate and phenotype correlations with tip branches

pheno = read.csv("../../data/phenotype-data/combined-phenotype-data.csv", header=T, comment.char="#")
tips = subset(branch_rates, node.type=="tip")
names(tips)[2] = "sample"
pheno_rates = merge(pheno, tips, by="sample")

pheno_rates = select(pheno_rates, sample, Adult_Mass.g., Total_Length.mm., Head.Body_Length.mm., Tail_Length.mm., Hind_Foot_Length.mm., Relative_Tail_Length, Relative_Hind_Foot_Length, dN, dS, dNdS)

pheno_rates_long = melt(pheno_rates, id.vars=c("sample", "dN", "dS", "dNdS"))

#pheno_rates_long = gather(pheno_rates, sample, value, Adult_Mass.g., Total_Length.mm., Head.Body_Length.mm., Tail_Length.mm., Hind_Foot_Length.mm., Relative_Tail_Length, Relative_Hind_Foot_Length)

9.1 Avg dS per tip vs phenotype

p = ggplot(pheno_rates_long, aes(x=log(value), y=log(dS))) +
  geom_point(size=2, alpha=0.2, color="#333333") +
  geom_smooth(method="lm", se=F, linetype="dashed", color=corecol(numcol=1, pal="wilke", offset=2)) +
  xlab("log avg. trait value per tip") +
  ylab("log dS per tip") +
  facet_wrap(~variable, scales="free_x") +
  bartheme()
print(p)

9.2 Avg dN per tip vs phenotype

p = ggplot(pheno_rates_long, aes(x=log(value), y=log(dN))) +
  geom_point(size=2, alpha=0.2, color="#333333") +
  geom_smooth(method="lm", se=F, linetype="dashed", color=corecol(numcol=1, pal="wilke", offset=2)) +
  xlab("log avg. trait value per tip") +
  ylab("log dN per tip") +
  facet_wrap(~variable, scales="free_x") +
  bartheme()
print(p)

9.3 Avg dN/dS per tip vs phenotype

p = ggplot(pheno_rates_long, aes(x=log(value), y=log(dNdS))) +
  geom_point(size=2, alpha=0.2, color="#333333") +
  geom_smooth(method="lm", se=F, linetype="dashed", color=corecol(numcol=1, pal="wilke", offset=2)) +
  xlab("log avg. trait value per tip") +
  ylab("log dN/dS per tip") +
  facet_wrap(~variable, scales="free_x") +
  bartheme()
print(p)

< Back to summary