Murine substitution rates
::opts_chunk$set(echo = TRUE, warning = FALSE, message = FALSE)
knitr
library(ggplot2)
library(cowplot)
library(ggbeeswarm)
library(dplyr)
library(kableExtra)
library(tidyr)
library(ggtree)
library(phytools)
library(phangorn)
library(reshape2)
library(ggExtra)
library(ggrepel)
library(vroom)
library(ggdist)
library(stringr)
library(ggsignif)
library(phytools)
library(castor)
library(MCMCtreeR)
library(here)
library(stringr)
library(BAMMtools)
library(nlme)
source(here("docs", "scripts", "lib", "design.r"))
source(here("docs", "scripts", "lib", "get_tree_info.r"))
#source("C:/bin/core/r/design.r")
#source("C:/bin/core/r/get_tree_info.r")
#source("C:/Users/grt814/bin/core/corelib/design.r")
#source("C:/Users/grt814/bin/core/get_tree_info.r")
#htmltools::includeHTML("../html-chunks/rmd_nav.html")
1 Full coding species tree
# This chunk handles all of the main inputs and reads the tree
cat("188 species targeted capture to mouse exons assembled with SPADES.\n")
## 188 species targeted capture to mouse exons assembled with SPADES.
cat("11,775 coding loci aligned with exonerate+mafft\n")
## 11,775 coding loci aligned with exonerate+mafft
cat("Gene trees inferred with IQtree.\n")
## Gene trees inferred with IQtree.
cat("Species tree inferred with ASTRAL.\n")
## Species tree inferred with ASTRAL.
cat("Branch lengths estimated by ASTRAL.\n")
## Branch lengths estimated by ASTRAL.
# Data summary
###############
#tree_file = here("docs", "data", "trees", "astral", "concord-rooted", "full_coding_iqtree_astral.cf.labeled.tree")
= here("docs", "data", "trees", "astral", "concord-rooted-bl", "full_coding_iqtree_astral_rooted_bl.cf.labeled.tree")
tree_file # Newick tree file, with tp labels
= read.tree(tree_file)
rodent_tree = treeToDF(rodent_tree)
tree_to_df_list = tree_to_df_list[["info"]]
tree_info # Read the tree and parse with treetoDF
= tree_info %>% separate(label, c("tp", "support"), sep=">", remove=F)
tree_info $tp = paste(tree_info$tp, ">", sep="")
tree_info= tree_info %>% separate(support, c("astral", "gcf", "scf"), sep="/", remove=T)
tree_info # Split the label by /. tp is my treeParse label.
$astral[tree_info$node.type=="tip"] = NA
tree_info# Fill in ASTRAL support as NA for the tips
$astral = as.numeric(tree_info$astral)
tree_info$gcf = as.numeric(tree_info$gcf)
tree_info$scf = as.numeric(tree_info$scf)
tree_info# Convert all supports to numeric
###############
#iq_tree_labels = here("docs", "data", "trees", "astral", "concord-rooted", "full_coding_iqtree_astral.cf.branch")
= here("docs", "data", "trees", "astral", "concord-rooted-bl", "full_coding_iqtree_astral_rooted_bl.cf.branch")
iq_tree_labels # Newick tree file, with iqtree labels
###############
#cf_stat_file = here("docs", "data", "trees", "astral", "concord-rooted", "full_coding_iqtree_astral.cf.stat")
= here("docs", "data", "trees", "astral", "concord-rooted-bl", "full_coding_iqtree_astral_rooted_bl.cf.stat")
cf_stat_file = read.table(cf_stat_file, header=T)
cf_stats # Concordance factor file
###############
#cf_rep_dir = here("docs", "data", "trees", "astral", "concord-rooted", "cf-reps")
= here("docs", "data", "trees", "astral", "concord-rooted-bl", "cf-reps")
cf_rep_dir #delta_outfile = here("docs", "data", "trees", "astral", "concord-rooted", "delta.tab")
= here("docs", "data", "trees", "astral", "concord-rooted-bl", "delta.tab")
delta_outfile # CF reps for delta and delta outfile
###############
= here("docs", "data", "trees", "astral", "astral-colonization-branches.txt")
col_file = here("docs", "data", "trees", "astral", "astral-moprho-ou-shift-branches.txt")
morpho_file
= c("Lophiomys_imhausi_UM5152", "Lophuromys_woosnami_LSUMZ37793", "<1>", "<187>", "<186>")
exclude_branches # Colonization branches and branches around the root to exclude from some things
###############
= here("docs", "data", "trees", "gene-trees", "loci-labeled.treefile")
gt_file # The file containing the gene trees
###############
#xmax = 31
= 0.175
xmax # The max of the x-axis for tree figures
= here("docs", "data", "substitution-rates", "full-coding-slac-cut.csv")
gene_rates_file
= here("docs", "data", "substitution-rates", "full-coding-astral-slac-branch-rates.csv")
branch_rates_file
= here("docs", "data", "substitution-rates", "full-coding-astral-slac-branch-rates-st.csv")
branch_rates_st_file
= here("docs", "data", "substitution-rates", "full-coding-astral-slac-branch-rates-morphofacial.csv")
branch_rates_morpho_file
= here("docs", "data", "substitution-rates", "full-coding-astral-slac-branch-rates-arid.csv")
branch_rates_arid_file
#gene_rates_file = "../../data/rates/full-coding-slac.csv.gz"
# File with rates calculated per gene
###############
= here("docs", "data", "phenotype-data", "combined-phenotype-data.csv")
pheno_data_file
###############
# The node/branch labels in R and IQtree differ. IQtree uses a nice, logical post-ordering
# of internal nodes while R does something random and assigns labels to tips as well. This
# chunk matches those up for the delta analysis later
= read.tree(iq_tree_labels)
iq_tree = treeToDF(iq_tree)
iqtree_to_df_list = iqtree_to_df_list[["info"]]
iqtree_info # Read the IQ tree tree with branch labels in and parse with get_tree_info
#node_convert = matchNodes(tree_to_df_list[["labeled.tree"]], iqtree_to_df_list[["labeled.tree"]], method="descendants")
$iqtree.node = NA
tree_info# Add a column to the main tree table about IQ tree labels
for(i in 1:nrow(tree_info)){
= tree_info[i,]$node
cur_node = subset(iqtree_info, node==cur_node)
iqtree_row = iqtree_row$label
iqtree_label $iqtree.node = iqtree_label
tree_info[i,]
}# For every row in the main tree table, add in the IQ tree node label given that
# we've read the same tree in R and can use the node.labels
2 Substitution rates by gene
We ran each of the 11,775 coding loci through HyPhy’s standard MG94 fit with the -local
option to estimate a rate for each branch in the input tree.
For input trees we used the gene tree estimated from each individual alignment to reduce false inferences of substitutions that result from tree misspecification.
= read.csv(gene_rates_file, header=T)
rates # Read the site counts by branch per gene
#rates = vroom(gene_rates_file, comment="#")
# Use vroom to unzip and read the gene rates file
# NOTE: vroom does a bad job cleaning up huge tmp files, so be sure to check manually
$dn = rates$N / rates$EN
ratesis.nan(rates$dn),]$dn = NA
rates[$ds = rates$S / rates$ES
ratesis.nan(rates$ds),]$ds = NA
rates[$dn.ds = rates$dn / rates$ds
rates# Compute dN and dS and dN/dS
= group_by(rates, file) %>% summarize(dn=mean(dn, na.rm=T), ds=mean(ds, na.rm=T), dn.ds=mean(dn.ds, na.rm=T))
gene_rates # Average rates for each branch by gene
$high.dn.ds = "N"
gene_rates$dn / gene_rates$ds > 1,]$high.dn.ds = "Y"
gene_rates[gene_rates# Flag the genes with dN/dS > 1
= ggplot(subset(gene_rates, ds < 0.05), aes(x=ds, y=dn, color=high.dn.ds)) +
p geom_point(size=2, alpha=0.2) +
#geom_smooth(method="lm", se=F, ) +
xlab("Avg. dS per gene") +
ylab("Avg. dN per gene") +
scale_color_manual(name="dN/dS>1", values=c("#333333", corecol(numcol=1, offset=2))) +
bartheme() +
theme(legend.position="bottom",
legend.title = element_text(size=14))
= ggExtra::ggMarginal(p, type="histogram", bins=50, fill=corecol(pal="wilke", numcol=1), color="#666666")
p print(p)
###############
= here("docs", "figs", "full-coding-gene-ds-dn.png")
fig_outfile ggsave(fig_outfile, p, width=6, height=4, unit="in")
# Save the figure
= ggplot(subset(gene_rates, ds < 0.05), aes(x=ds)) +
ds_p geom_histogram(bins=50, fill=corecol(pal="wilke", numcol=1), color="#666666") +
scale_y_continuous(expand=c(0,0)) +
xlab("dS") +
ylab("# of genes") +
bartheme()
print(ds_p)
# Distribution of dS when using gene trees
= ggplot(gene_rates, aes(x=dn)) +
dn_p geom_histogram(bins=50, fill=corecol(pal="wilke", numcol=1), color="#666666") +
scale_y_continuous(expand=c(0,0)) +
xlab("dN") +
ylab("# of genes") +
bartheme()
print(dn_p)
# Distribution of dN when using gene trees
= quantile(gene_rates$ds, 0.98)
ds_filter_level #ds_filter_level = 0.03
= subset(gene_rates, ds > ds_filter_level)$file
ds_filter # Get a list of genes to filter out in subsequent analyses based on dS
print(paste("Removing", length(ds_filter), "genes with dS above", ds_filter_level, "from subsequent analyses."))
## [1] "Removing 236 genes with dS above 0.0338467469553527 from subsequent analyses."
#write.csv(ds_filter, file="../../data/rates/full-coding-mg94-local-ds-filter-0.95quant.csv", row.names=F)
3 Calculation substitution rates per branch in the presence of gene tree discordance
3.1 Branch presence
Because we used the gene trees, in order to quantify rates on species tree branches we first needed to check whether branches in the species tree exist in a given gene tree.
This resulted in three categories for a species tree branch in a given gene tree:
- Full clade: All species in the clade that descends from the branch in the species tree are present as a monophyletic split in the gene tree.
- Parital clade: Not all species in the clade that descends from the branch in the species tree are present in the gene tree, but the ones that are present form a monophyletic split.
- Discordant/missing clade: Either the species in the clade that descends from the branch in the species tree do not form a monophyletic split in this gene tree (discordant) or ALL species in this clade are missing from this gene tree (missing)
Average rates are then calculated as (for dS, for example):
\[\frac{\sum_{i=1}^{n}\text{branch dS}_i}{n}\]
Where:
- \(n = \text{# full clade genes} + \text{# partial clade genes}\) for this branch
3.1.1 Species tree branch presence/absence per gene
= read.csv(branch_rates_file, header=T)
branch_rates # Read the branch rates data
names(branch_rates)[1] = "tp"
#branch_rates = subset(branch_rates, !tp %in% exclude_branches)
= names(branch_rates)[5:20]
cols_to_na for(col in cols_to_na){
$tp %in% exclude_branches,][[col]] = NA
branch_rates[branch_rates
}# For branches that we want to exclude for counting, convert
# columns with counts to NA
= names(tree_info)[!(names(tree_info) %in% names(branch_rates))] # get non common names
uniq_info_cols = c(uniq_info_cols,"clade") # appending key parameter
uniq_info_cols # Get a list of columns from the tree_info df to join to the tree rates df
= branch_rates %>% left_join((tree_info %>% select(uniq_info_cols)), by="clade")
branch_rates # Select the columns from tree_info and join to tree_rates, merging by clade
# https://stackoverflow.com/a/61628157
= branch_rates[order(branch_rates$node), ]
branch_rates # Re-order the rows by the R node
= select(branch_rates, clade, node.type, num.genes.full)
full_clade $label = "Full clade"
full_cladenames(full_clade)[3] = "num.genes"
= select(branch_rates, clade, node.type, num.genes.partial)
partial_clade $label = "Partial clade"
partial_cladenames(partial_clade)[3] = "num.genes"
= select(branch_rates, clade, node.type, num.genes.descendant.counted)
descendant_counted $label = "Descendant counted"
descendant_countednames(descendant_counted)[3] = "num.genes"
= select(branch_rates, clade, node.type, num.genes.discordant)
discordant_clade $label = "Discordant clade"
discordant_cladenames(discordant_clade)[3] = "num.genes"
= select(branch_rates, clade, node.type, num.genes.missing)
no_clade $label = "Missing clade"
no_cladenames(no_clade)[3] = "num.genes"
# Subset each clade count column to add a label
= rbind(full_clade, partial_clade, descendant_counted, discordant_clade, no_clade)
clade_counts # Convert branch categories to long format
$label = factor(clade_counts$label, levels=c("Full clade", "Partial clade", "Descendant counted", "Discordant clade", "Missing clade"))
clade_counts# Factorize the labels in order
= ggplot(clade_counts, aes(x=label, y=num.genes, group=label, color=node.type)) +
p geom_quasirandom(size=2, width=0.25, alpha=0.25) +
geom_boxplot(outlier.shape=NA, alpha=0.15, width=0.5, color="#666666") +
ylab("# of genes") +
xlab("Species tree\nbranch classification") +
bartheme() +
theme(axis.text.x = element_text(angle=25, hjust=1)) +
guides(colour=guide_legend(override.aes=list(alpha=1)))
print(p)
###############
= here("docs", "figs", "full-coding-branch-presence.png")
fig_outfile ggsave(fig_outfile, p, width=6, height=4, unit="in")
# Save the figure
3.1.2 Number of genes per branch
$num.genes.present = branch_rates$num.genes.full + branch_rates$num.genes.partial
branch_rates# Sum the two columns that indicate a clade is present in a gene
= ggplot(branch_rates, aes(x=num.genes.present)) +
p geom_histogram(bins=50, fill=corecol(pal="wilke", numcol=1, offset=1), color="#ececec") +
scale_y_continuous(expand=c(0,0)) +
xlab("Genes per branch") +
ylab("# of branches") +
bartheme()
print(p)
###############
= here("docs", "figs", "full-coding-genes-per-branch.png")
fig_outfile ggsave(fig_outfile, p, width=6, height=4, unit="in")
# Save the figure
###############
= data.frame("Stat"=c("Branch with most genes", "Branch with fewest genes", "Median genes per branch", "Mean genes per branch"),
t_data "Branch label"=c(branch_rates$tp[branch_rates$num.genes.present==max(branch_rates$num.genes.present, na.rm=T)][3], branch_rates$tp[branch_rates$num.genes.present==min(branch_rates$num.genes.present, na.rm=T)][6],"NA", "NA"),
"Num genes"=c(branch_rates$num.genes.present[branch_rates$num.genes.present==max(branch_rates$num.genes.present, na.rm=T)][3], branch_rates$num.genes.present[branch_rates$num.genes.present==min(branch_rates$num.genes.present, na.rm=T)][6],
median(branch_rates$num.genes.present, na.rm=T),
mean(branch_rates$num.genes.present, na.rm=T)
)
)
%>% kable(caption="Branch statistics") %>% kable_styling(bootstrap_options=c("striped", "condensed", "responsive"), full_width=F) t_data
Stat | Branch.label | Num.genes |
---|---|---|
Branch with most genes | mm10 | 11793.000 |
Branch with fewest genes | <31> | 233.000 |
Median genes per branch | NA | 7506.000 |
Mean genes per branch | NA | 6756.251 |
3.1.3 gCF and branch presence
These measures are highly correlated with gene concordance factors:
$clade.perc = (branch_rates$num.genes.full + branch_rates$num.genes.partial) / (branch_rates$num.genes.full + branch_rates$num.genes.partial + branch_rates$num.genes.descendant.counted + branch_rates$num.genes.discordant + branch_rates$num.genes.missing)
branch_rates# Get the proportion of times a branch is present
= ggplot(branch_rates, aes(x=gcf, y=clade.perc)) +
p geom_point(size=2, alpha=0.4, color="#333333") +
geom_smooth(method="lm", se=F, linetype="dashed", color="#920000") +
xlab("gCF") +
ylab("% of genes with clade present") +
bartheme() +
theme(legend.position="none")
print(p)
###############
= here("docs", "figs", "full-coding-gcf-presence.png")
fig_outfile ggsave(fig_outfile, p, width=6, height=4, unit="in")
# Save the figure
3.2 Calculating branch rates
To control for the fact that different branches will be present in different numbers of genes, we can calculate average rates per branch by summing the raw counts of the number of sites and the number of substitutions across all genes in which that branch is present as a full or partial clade.
For a given branch, \(b\):
\[dN_b = \frac{\sum_{g \in G_b}N_g}{\sum_{g \in G_b}EN_g}\]
and
\[dS_b = \frac{\sum_{g \in G_b}S_g}{\sum_{g \in G_b}ES_g}\]
where \(G_b\) is the set of genes that contain branch \(b\). Then,
\[\omega_b = \frac{dN_b}{dS_b}\]
3.3 Branch rates compared to rates using the species tree
= read.csv(branch_rates_st_file, header=T)
branch_rates_st = select(branch_rates_st, node.label, dS, dN, dNdS)
branch_rates_st names(branch_rates_st) = c("tp", "dS.st", "dN.st", "dNdS.st")
= names(branch_rates_st)[2:4]
cols_to_na for(col in cols_to_na){
$tp %in% exclude_branches,][[col]] = NA
branch_rates_st[branch_rates_st
}# For branches that we want to exclude for counting, convert
# columns with counts to NA
= merge(branch_rates, branch_rates_st, by="tp")
branch_rates = branch_rates[order(branch_rates$node), ]
branch_rates # Re-order the rows by the R node
= ggplot(branch_rates, aes(x=dNdS, y=dNdS.st)) +
p geom_point(size=3, color="#999999", alpha=0.25) +
#geom_smooth(method="lm") +
geom_abline(aes(slope=1, intercept=0, color="1:1"), size=2, linetype="dashed") +
scale_color_manual(values=c("1:1"="#920000")) +
#scale_x_continuous(limits=c(0,0.6)) +
#scale_y_continuous(limits=c(0,0.6)) +
xlab("Substitution rate per branch\nwith gene trees") +
ylab("Substitution rate per branch\nwith species tree") +
bartheme()
#theme(axis.text=element_text(size=16),
# axis.title=element_text(size=24),
# legend.text=element_text(size=24))
print(p)
#ggsave("../figs/rate-comps.png", disco_comp, width=10, height=8, unit="in")
$dNdS.diff = branch_rates$dNdS.st - branch_rates$dNdS
branch_rates
###############
= here("docs", "figs", "full-coding-rates-comp.png")
fig_outfile ggsave(fig_outfile, p, width=6, height=4, unit="in")
# Save the figure
4 Substitution rates per branch (all genes)
4.1 dN and dS by branch
This results in the following distributions for average rates across branches (green lines indicating 95th percentile of each rate):
= quantile(branch_rates$dS, 0.95, na.rm=T)
ds_95_perc = quantile(branch_rates$dN, 0.95, na.rm=T)
dn_95_perc
= ggplot(branch_rates, aes(x=dS, y=dN, color=node.type)) +
p geom_point(size=2, alpha=0.2) +
geom_text_repel(aes(label=ifelse(dS>ds_95_perc | dN>dn_95_perc, as.character(node), '')), show_guide=F) +
#(aes(label=ifelse(avg.dN>dn_95_perc, as.character(node), '')), show_guide=F) +
geom_vline(xintercept=ds_95_perc, linetype="dashed", color=corecol(numcol=1, offset=6)) +
geom_hline(yintercept=dn_95_perc, linetype="dashed", color=corecol(numcol=1, offset=6)) +
#geom_smooth(method="lm", se=F, ) +
xlab("dS per branch") +
ylab("dN per branch") +
bartheme() +
theme(legend.position="bottom") +
guides(colour = guide_legend(override.aes = list(alpha = 1)))
= ggExtra::ggMarginal(p, type="histogram", bins=50, fill=corecol(pal="wilke", numcol=1, offset=1), color="#666666")
p print(p)
$ds.outlier = ifelse(branch_rates$dS>ds_95_perc,branch_rates$tp,'')
branch_rates$dn.outlier = ifelse(branch_rates$dN>dn_95_perc,branch_rates$tp,'')
branch_rates
###############
= here("docs", "figs", "full-coding-branch-ds-dn.png")
fig_outfile ggsave(fig_outfile, p, width=6, height=4, unit="in")
# Save the figure
4.2 dS tree
= corecol(numcol=1, pal="wilke", offset=1)
h = corecol(numcol=1, offset=1)
l
= ggtree(rodent_tree, size=0.8, ladderize=F, aes(color=log(branch_rates$dS))) +
p scale_color_continuous(name='log dS', low=l, high=h) +
xlim(0, xmax) +
geom_tiplab(color="#333333", fontface='italic', size=2) +
theme(legend.position=c(0.05,0.9)) +
geom_label(aes(x=branch, label=ifelse(branch_rates$dS>ds_95_perc,as.character(node),'')), label.size=NA, fill="transparent")
#geom_text(aes(label=node), hjust=-.1, color="#006ddb")
#geom_nodepoint(color="#666666", alpha=0.85, size=4)
print(p)
###############
= here("docs", "figs", "full-coding-astral-rooted-ds.png")
fig_outfile ggsave(fig_outfile, p, width=14, height=14, unit="in")
# Save the tree image
4.3 dN tree
= corecol(numcol=1, pal="wilke", offset=1)
h = corecol(numcol=1, offset=1)
l
= ggtree(rodent_tree, size=0.8, ladderize=F, aes(color=log(branch_rates$dN))) +
p scale_color_continuous(name='log dN', low=l, high=h) +
xlim(0, xmax) +
geom_tiplab(color="#333333", fontface='italic', size=2) +
theme(legend.position=c(0.05,0.9)) +
geom_label(aes(x=branch, label=ifelse(branch_rates$dN > dn_95_perc, as.character(node) ,'')), label.size=NA, fill="transparent")
#geom_text(aes(label=rodent_data$support), hjust=-.1, color="#006ddb") +
#geom_nodepoint(color="#666666", alpha=0.85, size=4)
print(p)
###############
= here("docs", "figs", "full-coding-astral-rooted-dn.png")
fig_outfile ggsave(fig_outfile, p, width=14, height=14, unit="in")
# Save the tree image
4.4 dN/dS distribution
= ggplot(branch_rates, aes(x=dNdS)) +
p geom_histogram(bins=50, fill=corecol(pal="wilke", numcol=1), color="#666666") +
scale_y_continuous(expand=c(0,0)) +
xlab("dN/dS") +
ylab("# of branches") +
bartheme()
print(p)
# Distribution of dN/dS when using gene trees
= quantile(branch_rates$dNdS, 0.95, na.rm=T)
dnds_95_perc $dnds.outlier = ifelse(branch_rates$dNdS>dnds_95_perc,branch_rates$node,'')
branch_rates
###############
= here("docs", "figs", "full-coding-branch-dnds.png")
fig_outfile ggsave(fig_outfile, p, width=6, height=4, unit="in")
# Save the figure
4.5 dN/dS tree
= corecol(numcol=1, pal="wilke", offset=1)
h = corecol(numcol=1, offset=1)
l
= ggtree(rodent_tree, size=0.8, ladderize=F, aes(color=log(branch_rates$dNdS))) +
p scale_color_continuous(name='log dN/dS', low=l, high=h) +
xlim(0, xmax) +
geom_tiplab(color="#333333", fontface='italic', size=2) +
theme(legend.position=c(0.05,0.9)) +
geom_label(aes(x=branch, label=ifelse(branch_rates$dNdS>dnds_95_perc ,as.character(node), '')), label.size=NA, fill="transparent")
#geom_text(aes(label=rodent_data$support), hjust=-.1, color="#006ddb") +
#geom_nodepoint(color="#666666", alpha=0.85, size=4)
print(p)
###############
= here("docs", "figs", "full-coding-astral-rooted-dnds.png")
fig_outfile ggsave(fig_outfile, p, width=14, height=14, unit="in")
# Save the tree image
4.6 Substitution rates and discordance
4.6.1 dS vs. concordance factors
Only branches with avg. dS < 0.05
= ggplot(subset(branch_rates, node.type!="ROOT" & dS < ds_95_perc), aes(x=dS, y=gcf)) +
ds_gcf_p geom_point(size=3, alpha=0.5) +
#geom_text_repel(aes(label=ifelse(avg.ds>0.2|avg.dn>0.01,as.character(node),'')), show_guide=F) +
#geom_smooth(method="lm", se=F, ) +
xlab("dS per branch") +
ylab("gCF per branch") +
bartheme()
#theme(legend.position="bottom") +
#guides(colour = guide_legend(override.aes = list(alpha = 1)))
= ggExtra::ggMarginal(ds_gcf_p, type="histogram", bins=50, fill=corecol(pal="wilke", numcol=1, offset=4), color="#666666")
ds_gcf_p
= ggplot(subset(branch_rates, node.type!="ROOT" & dS < ds_95_perc), aes(x=dS, y=scf)) +
ds_scf_p geom_point(size=3, alpha=0.5) +
#geom_text_repel(aes(label=ifelse(avg.ds>0.2|avg.dn>0.01,as.character(node),'')), show_guide=F) +
#geom_smooth(method="lm", se=F, ) +
xlab("dS per branch") +
ylab("sCF per branch") +
bartheme()
#theme(legend.position="bottom") +
#guides(colour = guide_legend(override.aes = list(alpha = 1)))
= ggExtra::ggMarginal(ds_scf_p, type="histogram", bins=50, fill=corecol(pal="wilke", numcol=1, offset=5), color="#666666")
ds_scf_p
= plot_grid(ds_gcf_p, ds_scf_p, ncol=2)
p print(p)
###############
= here("docs", "figs", "full-coding-astral-cf-ds.png")
fig_outfile ggsave(fig_outfile, p, width=6, height=3, unit="in")
# Save the figure
4.6.2 dN vs. concordance factors
Only branches with avg. dN < 0.01
= ggplot(subset(branch_rates, node.type!="ROOT" & dN < dn_95_perc), aes(x=dN, y=gcf)) +
dn_gcf_p geom_point(size=3, alpha=0.5) +
#geom_text_repel(aes(label=ifelse(avg.ds>0.2|avg.dn>0.01,as.character(node),'')), show_guide=F) +
#geom_smooth(method="lm", se=F, ) +
xlab("dN per branch") +
ylab("gCF per branch") +
bartheme()
#theme(legend.position="bottom") +
#guides(colour = guide_legend(override.aes = list(alpha = 1)))
= ggExtra::ggMarginal(dn_gcf_p, type="histogram", bins=50, fill=corecol(pal="wilke", numcol=1, offset=4), color="#666666")
dn_gcf_p
= ggplot(subset(branch_rates, node.type!="ROOT" & dN < dn_95_perc), aes(x=dN, y=scf)) +
dn_scf_p geom_point(size=3, alpha=0.5) +
#geom_text_repel(aes(label=ifelse(avg.ds>0.2|avg.dn>0.01,as.character(node),'')), show_guide=F) +
#geom_smooth(method="lm", se=F, ) +
xlab("dN per branch") +
ylab("sCF per branch") +
bartheme()
#theme(legend.position="bottom") +
#guides(colour = guide_legend(override.aes = list(alpha = 1)))
= ggExtra::ggMarginal(dn_scf_p, type="histogram", bins=50, fill=corecol(pal="wilke", numcol=1, offset=5), color="#666666")
dn_scf_p
= plot_grid(dn_gcf_p, dn_scf_p, ncol=2)
p print(p)
###############
= here("docs", "figs", "full-coding-astral-cf-dn.png")
fig_outfile ggsave(fig_outfile, p, width=6, height=3, unit="in")
# Save the figure
4.6.3 dN/dS vs. concordance factors
Only branches with avg. dN/dS < 0.5
= ggplot(subset(branch_rates, node.type!="ROOT" & dNdS < 0.5), aes(x=dNdS, y=gcf)) +
dnds_gcf_p geom_point(size=3, alpha=0.5) +
#geom_text_repel(aes(label=ifelse(avg.ds>0.2|avg.dn>0.01,as.character(node),'')), show_guide=F) +
#geom_smooth(method="lm", se=F, ) +
xlab("dN/dS per branch") +
ylab("gCF per branch") +
bartheme()
#theme(legend.position="bottom") +
#guides(colour = guide_legend(override.aes = list(alpha = 1)))
= ggExtra::ggMarginal(dnds_gcf_p, type="histogram", bins=50, fill=corecol(pal="wilke", numcol=1, offset=4), color="#666666")
dnds_gcf_p
= ggplot(subset(branch_rates, node.type!="ROOT" & dNdS < 0.5), aes(x=dNdS, y=scf)) +
dnds_scf_p geom_point(size=3, alpha=0.5) +
#geom_text_repel(aes(label=ifelse(avg.ds>0.2|avg.dn>0.01,as.character(node),'')), show_guide=F) +
#geom_smooth(method="lm", se=F, ) +
xlab("dN/dS per branch") +
ylab("sCF per branch") +
bartheme()
#theme(legend.position="bottom") +
#guides(colour = guide_legend(override.aes = list(alpha = 1)))
= ggExtra::ggMarginal(dnds_scf_p, type="histogram", bins=50, fill=corecol(pal="wilke", numcol=1, offset=5), color="#666666")
dnds_scf_p
= plot_grid(dnds_gcf_p, dnds_scf_p, ncol=2)
p print(p)
###############
= here("docs", "figs", "full-coding-astral-cf-dnds.png")
fig_outfile ggsave(fig_outfile, p, width=6, height=3, unit="in")
# Save the figure
4.7 Substitution rates and colonization branches (all genes)
= read.csv(col_file, header=F, comment.char="#")
col_branches names(col_branches) = c("tp")
$col.branch = "Other"
branch_rates
$col.branch[branch_rates$tp %in% col_branches$tp] = "Colonization"
branch_rates
#tree_info$col.desc.branch = "N"
for(i in 1:nrow(branch_rates)){
if(branch_rates[i,]$node.type == "internal" && branch_rates[i,]$col.branch == "Colonization"){
= getDescendants(rodent_tree, branch_rates[i,]$node)
cur_desc $col.branch[branch_rates$node==cur_desc[1]] = "Descendant"
branch_rates$col.branch[branch_rates$node==cur_desc[2]] = "Descendant"
branch_rates
} }
4.7.1 Tree with colonization branches labeled
= corecol(numcol=1, pal="wilke", offset=3)
h = corecol(numcol=1, offset=3)
l # Colors
= ggtree(rodent_tree, size=0.8, ladderize=F, aes(color=branch_rates$col.branch)) +
p scale_color_manual(name='Branch partition', values=corecol(pal="wilke", numcol=3)) +
xlim(0, xmax) +
geom_tiplab(color="#333333", fontface='italic', size=2) +
theme(legend.position=c(0.15,0.9))
print(p)
# Colonization branch tree
###############
= here("docs", "figs", "full-coding-astral-col-branches.png")
fig_outfile ggsave(fig_outfile, p, width=14, height=14, unit="in")
# Save the tree image
4.7.2 dS by colonization branch
#anc_info = subset(anc_info_w_root, node.type != "root")
= subset(select(branch_rates, clade, node.type, col.branch, dS), col.branch == "Colonization")
col_ds $label = "Colonization"
col_ds#names(full_clade)[3] = "num.genes"
= subset(select(branch_rates, clade, node.type, col.branch, dS), col.branch == "Descendant")
desc_ds $label = "Descendant"
desc_ds
= subset(select(branch_rates, clade, node.type, col.branch, dS), col.branch == "Other")
other_ds $label = "Other"
other_ds
= rbind(col_ds, desc_ds, other_ds)
ds_df # Convert branch categories to long format
###############
$label = factor(ds_df$label, levels=c("Colonization", "Descendant", "Other"))
ds_df# Add labels
= list(c("Colonization", "Descendant"), c("Colonization", "Other"), c("Descendant", "Other"))
x_comps # Comparisons to make
= ggplot(ds_df, aes(x=label, y=dS, group=label, color=node.type)) +
p geom_quasirandom(size=2, width=0.25, alpha=0.25) +
geom_boxplot(outlier.shape=NA, alpha=0.15, width=0.5, color="#666666") +
geom_signif(comparisons=x_comps, map_signif_level=TRUE, textsize=4, size=1, step_increase=0.12, margin_top=0.1) +
ylab("dS") +
xlab("Species tree\nbranch partition") +
bartheme() +
theme(axis.text.x = element_text(angle=25, hjust=1)) +
guides(colour=guide_legend(override.aes=list(alpha=1)))
print(p)
###############
= here("docs", "figs", "full-coding-branch-ds-col.png")
fig_outfile ggsave(fig_outfile, p, width=6, height=4, unit="in")
4.7.3 dN by colonization branch
#anc_info = subset(anc_info_w_root, node.type != "root")
= subset(select(branch_rates, clade, node.type, col.branch, dN), col.branch == "Colonization")
col_dn $label = "Colonization"
col_dn#names(full_clade)[3] = "num.genes"
= subset(select(branch_rates, clade, node.type, col.branch, dN), col.branch == "Descendant")
desc_dn $label = "Descendant"
desc_dn
= subset(select(branch_rates, clade, node.type, col.branch, dN), col.branch == "Other")
other_dn $label = "Other"
other_dn
= rbind(col_dn, desc_dn, other_dn)
dn_df # Convert branch categories to long format
###############
$label = factor(dn_df$label, levels=c("Colonization", "Descendant", "Other"))
dn_df# Add labels1
= list(c("Colonization", "Descendant"), c("Colonization", "Other"), c("Descendant", "Other"))
x_comps # Comparisons to make
= ggplot(dn_df, aes(x=label, y=dN, group=label, color=node.type)) +
p geom_quasirandom(size=2, width=0.25, alpha=0.25) +
geom_boxplot(outlier.shape=NA, alpha=0.15, width=0.5, color="#666666") +
geom_signif(comparisons=x_comps, map_signif_level=TRUE, textsize=4, size=1, step_increase=0.12, margin_top=0.1) +
ylab("dN") +
xlab("Species tree\nbranch partition") +
bartheme() +
theme(axis.text.x = element_text(angle=25, hjust=1)) +
guides(colour=guide_legend(override.aes=list(alpha=1)))
print(p)
###############
= here("docs", "figs", "full-coding-branch-dn-col.png")
fig_outfile ggsave(fig_outfile, p, width=6, height=4, unit="in")
4.7.4 dN/dS by colonization branch
#anc_info = subset(anc_info_w_root, node.type != "root")
= subset(select(branch_rates, clade, node.type, col.branch, dNdS), col.branch == "Colonization")
col_dnds $label = "Colonization"
col_dnds#names(full_clade)[3] = "num.genes"
= subset(select(branch_rates, clade, node.type, col.branch, dNdS), col.branch == "Descendant")
desc_dnds $label = "Descendant"
desc_dnds
= subset(select(branch_rates, clade, node.type, col.branch, dNdS), col.branch == "Other")
other_dnds $label = "Other"
other_dnds
= rbind(col_dnds, desc_dnds, other_dnds)
dnds_df # Convert branch categories to long format
$label = factor(dnds_df$label, levels=c("Colonization", "Descendant", "Other"))
dnds_df
= list(c("Colonization", "Descendant"), c("Colonization", "Other"), c("Descendant", "Other"))
x_comps
= ggplot(dnds_df, aes(x=label, y=dNdS, group=label, color=node.type)) +
p geom_quasirandom(size=2, width=0.25, alpha=0.25) +
geom_boxplot(outlier.shape=NA, alpha=0.15, width=0.5, color="#666666") +
geom_signif(comparisons=x_comps, map_signif_level=TRUE, textsize=4, size=1, step_increase=0.12, margin_top=0.1) +
ylab("dN/dS") +
xlab("Species tree\nbranch partition") +
bartheme() +
theme(axis.text.x = element_text(angle=25, hjust=1)) +
guides(colour=guide_legend(override.aes=list(alpha=1)))
print(p)
###############
= here("docs", "figs", "full-coding-branch-dnds-col.png")
fig_outfile ggsave(fig_outfile, p, width=6, height=4, unit="in")
5 Substitution rates (1072 morphofacial genes)
5.1 Branch presence
= read.csv(branch_rates_morpho_file, header=T, comment.char="#")
branch_rates_mf # Read the file with rates from morphofacial genes
names(branch_rates_mf)[1] = "tp"
= names(branch_rates_mf)[5:20]
cols_to_na for(col in cols_to_na){
$tp %in% exclude_branches,][[col]] = NA
branch_rates_mf[branch_rates_mf
}# For branches that we want to exclude for counting, convert
# columns with counts to NA
= names(tree_info)[!(names(tree_info) %in% names(branch_rates_mf))] # get non common names
uniq_info_cols = c(uniq_info_cols,"clade") # appending key parameter
uniq_info_cols # Get a list of columns from the tree_info df to join to the tree rates df
= branch_rates_mf %>% left_join((tree_info %>% select(uniq_info_cols)), by="clade")
branch_rates_mf # Select the columns from tree_info and join to tree_rates, merging by clade
# https://stackoverflow.com/a/61628157
= branch_rates_mf[order(branch_rates_mf$node), ]
branch_rates_mf # Re-order the rows by the R node
###############
= select(branch_rates_mf, clade, node.type, num.genes.full)
full_clade $label = "Full clade"
full_cladenames(full_clade)[3] = "num.genes"
= select(branch_rates_mf, clade, node.type, num.genes.partial)
partial_clade $label = "Partial clade"
partial_cladenames(partial_clade)[3] = "num.genes"
= select(branch_rates_mf, clade, node.type, num.genes.descendant.counted)
descendant_counted $label = "Descendant counted"
descendant_countednames(descendant_counted)[3] = "num.genes"
= select(branch_rates_mf, clade, node.type, num.genes.discordant)
discordant_clade $label = "Discordant clade"
discordant_cladenames(discordant_clade)[3] = "num.genes"
= select(branch_rates_mf, clade, node.type, num.genes.missing)
no_clade $label = "Missing clade"
no_cladenames(no_clade)[3] = "num.genes"
# Subset each clade count column to add a label
= rbind(full_clade, partial_clade, descendant_counted, discordant_clade, no_clade)
clade_counts # Convert branch categories to long format
###############
$label = factor(clade_counts$label, levels=c("Full clade", "Partial clade", "Descendant counted", "Discordant clade", "Missing clade"))
clade_counts# Factorize the labels in order
# branch_counts = ggplot(clade_counts, aes(x=label, y=num.genes, group=label, color=node.type)) +
# geom_quasirandom(size=2, width=0.25, alpha=0.25) +
# geom_boxplot(outlier.shape=NA, alpha=0.15, width=0.5, color="#666666") +
# ylab("# of genes") +
# xlab("Species tree\nbranch classification") +
# bartheme() +
# theme(axis.text.x = element_text(angle=25, hjust=1)) +
# guides(colour=guide_legend(override.aes=list(alpha=1)))
# print(branch_counts)
5.2 Tree with OU shift branches labeled
= read.csv(morpho_file, header=F, comment.char="#")
morpho_branches names(morpho_branches) = c("tp")
$morpho.branch = "No OU shift"
branch_rates$morpho.branch[branch_rates$tp %in% morpho_branches$tp] = "OU shift"
branch_rates
$morpho.branch = "No OU shift"
branch_rates_mf$morpho.branch[branch_rates_mf$tp %in% morpho_branches$tp] = "OU shift"
branch_rates_mf
= corecol(numcol=1, pal="wilke", offset=3)
h = corecol(numcol=1, offset=3)
l # Colors
= ggtree(rodent_tree, size=0.8, ladderize=F, aes(color=branch_rates_mf$morpho.branch)) +
p scale_color_manual(name='Branch partition', values=corecol(numcol=2)) +
xlim(0, xmax) +
geom_tiplab(color="#333333", fontface='italic', size=2) +
theme(legend.position=c(0.15,0.9))
print(p)
# OU shift branch tree
###############
= here("docs", "figs", "full-coding-astral-morpho-branches.png")
fig_outfile ggsave(fig_outfile, p, width=14, height=14, unit="in")
# Save the tree image
5.3 dS
= subset(select(branch_rates_mf, clade, node.type, morpho.branch, dS), morpho.branch == "OU shift")
morpho_ds_mf $label = "OU shift (MF genes)"
morpho_ds_mf#names(full_clade)[3] = "num.genes"
= subset(select(branch_rates_mf, clade, node.type, morpho.branch, dS), morpho.branch == "No OU shift")
other_ds_mf $label = "No OU shift (MF genes)"
other_ds_mf
= subset(select(branch_rates, clade, node.type, morpho.branch, dS), morpho.branch == "OU shift")
morpho_ds_all $label = "OU shift (All genes)"
morpho_ds_all#names(full_clade)[3] = "num.genes"
= subset(select(branch_rates, clade, node.type, morpho.branch, dS), morpho.branch == "No OU shift")
other_ds_all $label = "No OU shift (All genes)"
other_ds_all
= rbind(morpho_ds_all, other_ds_all, morpho_ds_mf, other_ds_mf)
ds_df # Convert branch categories to long format
###############
$label = factor(ds_df$label, levels=c("OU shift (All genes)", "No OU shift (All genes)", "OU shift (MF genes)", "No OU shift (MF genes)"))
ds_df# Add labels
= list(c("OU shift (All genes)", "No OU shift (All genes)"), c("OU shift (MF genes)", "No OU shift (MF genes)"), c("OU shift (All genes)", "OU shift (MF genes)"))
x_comps # Comparisons to make
= ggplot(ds_df, aes(x=label, y=dS, group=label, color=node.type)) +
p geom_quasirandom(size=2, width=0.25, alpha=0.25) +
geom_boxplot(outlier.shape=NA, alpha=0.15, width=0.5, color="#666666") +
geom_signif(comparisons=x_comps, map_signif_level=TRUE, textsize=4, size=1, step_increase=0.12, margin_top=0.1) +
ylab("dS") +
xlab("Species tree\nbranch partition") +
bartheme() +
theme(axis.text.x = element_text(angle=25, hjust=1)) +
guides(colour=guide_legend(override.aes=list(alpha=1)))
print(p)
###############
= here("docs", "figs", "full-coding-branch-ds-morpho.png")
fig_outfile ggsave(fig_outfile, p, width=6, height=4, unit="in")
5.4 dN
= subset(select(branch_rates_mf, clade, node.type, morpho.branch, dN), morpho.branch == "OU shift")
morpho_dn_mf $label = "OU shift (MF genes)"
morpho_dn_mf#names(full_clade)[3] = "num.genes"
= subset(select(branch_rates_mf, clade, node.type, morpho.branch, dN), morpho.branch == "No OU shift")
other_dn_mf $label = "No OU shift (MF genes)"
other_dn_mf
= subset(select(branch_rates, clade, node.type, morpho.branch, dN), morpho.branch == "OU shift")
morpho_dn_all $label = "OU shift (All genes)"
morpho_dn_all#names(full_clade)[3] = "num.genes"
= subset(select(branch_rates, clade, node.type, morpho.branch, dN), morpho.branch == "No OU shift")
other_dn_all $label = "No OU shift (All genes)"
other_dn_all
= rbind(morpho_dn_all, other_dn_all, morpho_dn_mf, other_dn_mf)
dn_df # Convert branch categories to long format
###############
$label = factor(dn_df$label, levels=c("OU shift (All genes)", "No OU shift (All genes)", "OU shift (MF genes)", "No OU shift (MF genes)"))
dn_df# Add labels
= list(c("OU shift (All genes)", "No OU shift (All genes)"), c("OU shift (MF genes)", "No OU shift (MF genes)"), c("OU shift (All genes)", "OU shift (MF genes)"))
x_comps # Comparisons to make
= ggplot(dn_df, aes(x=label, y=dN, group=label, color=node.type)) +
p geom_quasirandom(size=2, width=0.25, alpha=0.25) +
geom_boxplot(outlier.shape=NA, alpha=0.15, width=0.5, color="#666666") +
geom_signif(comparisons=x_comps, map_signif_level=TRUE, textsize=4, size=1, step_increase=0.12, margin_top=0.1) +
ylab("dN") +
xlab("Species tree\nbranch partition") +
bartheme() +
theme(axis.text.x = element_text(angle=25, hjust=1)) +
guides(colour=guide_legend(override.aes=list(alpha=1)))
print(p)
###############
= here("docs", "figs", "full-coding-branch-dn-morpho.png")
fig_outfile ggsave(fig_outfile, p, width=6, height=4, unit="in")
5.5 dN/dS
= subset(select(branch_rates_mf, clade, node.type, morpho.branch, dNdS), morpho.branch == "OU shift")
morpho_dnds_mf $label = "OU shift (MF genes)"
morpho_dnds_mf#names(full_clade)[3] = "num.genes"
= subset(select(branch_rates_mf, clade, node.type, morpho.branch, dNdS), morpho.branch == "No OU shift")
other_dnds_mf $label = "No OU shift (MF genes)"
other_dnds_mf
= subset(select(branch_rates, clade, node.type, morpho.branch, dNdS), morpho.branch == "OU shift")
morpho_dnds_all $label = "OU shift (All genes)"
morpho_dnds_all#names(full_clade)[3] = "num.genes"
= subset(select(branch_rates, clade, node.type, morpho.branch, dNdS), morpho.branch == "No OU shift")
other_dnds_all $label = "No OU shift (All genes)"
other_dnds_all
= rbind(morpho_dnds_all, other_dnds_all, morpho_dnds_mf, other_dnds_mf)
dnds_df # Convert branch categories to long format
###############
$label = factor(dnds_df$label, levels=c("OU shift (All genes)", "No OU shift (All genes)", "OU shift (MF genes)", "No OU shift (MF genes)"))
dnds_df# Add labels
= list(c("OU shift (All genes)", "No OU shift (All genes)"), c("OU shift (MF genes)", "No OU shift (MF genes)"), c("OU shift (All genes)", "OU shift (MF genes)"), c("No OU shift (All genes)", "No OU shift (MF genes)"))
x_comps # Comparisons to make
= ggplot(dnds_df, aes(x=label, y=dNdS, group=label, color=node.type)) +
p geom_quasirandom(size=2, width=0.25, alpha=0.25) +
geom_boxplot(outlier.shape=NA, alpha=0.15, width=0.5, color="#666666") +
geom_signif(comparisons=x_comps, map_signif_level=TRUE, textsize=4, size=1, step_increase=0.12, margin_top=0.1) +
ylab("dN/dS") +
xlab("Species tree\nbranch partition") +
bartheme() +
theme(axis.text.x = element_text(angle=25, hjust=1)) +
guides(colour=guide_legend(override.aes=list(alpha=1)))
print(p)
###############
= here("docs", "figs", "full-coding-branch-dnds-morpho.png")
fig_outfile ggsave(fig_outfile, p, width=6, height=4, unit="in")
6 Substitution rates (108 arid genes)
6.1 Branch presence
#anc_info = subset(anc_info_w_root, node.type != "root")
= read.csv(branch_rates_arid_file, header=T, comment.char="#")
branch_rates_arid
names(branch_rates_arid)[1] = "tp"
= names(branch_rates_arid)[5:20]
cols_to_na for(col in cols_to_na){
$tp %in% exclude_branches,][[col]] = NA
branch_rates_arid[branch_rates_arid
}# For branches that we want to exclude for counting, convert
# columns with counts to NA
= names(tree_info)[!(names(tree_info) %in% names(branch_rates_arid))] # get non common names
uniq_info_cols = c(uniq_info_cols,"clade") # appending key parameter
uniq_info_cols # Get a list of columns from the tree_info df to join to the tree rates df
= branch_rates_arid %>% left_join((tree_info %>% select(uniq_info_cols)), by="clade")
branch_rates_arid # Select the columns from tree_info and join to tree_rates, merging by clade
# https://stackoverflow.com/a/61628157
= branch_rates_arid[order(branch_rates_arid$node), ]
branch_rates_arid # Re-order the rows by the R node
###############
= select(branch_rates_arid, clade, node.type, num.genes.full)
full_clade $label = "Full clade"
full_cladenames(full_clade)[3] = "num.genes"
= select(branch_rates_arid, clade, node.type, num.genes.partial)
partial_clade $label = "Partial clade"
partial_cladenames(partial_clade)[3] = "num.genes"
= select(branch_rates_arid, clade, node.type, num.genes.descendant.counted)
descendant_counted $label = "Descendant counted"
descendant_countednames(descendant_counted)[3] = "num.genes"
= select(branch_rates_arid, clade, node.type, num.genes.discordant)
discordant_clade $label = "Discordant clade"
discordant_cladenames(discordant_clade)[3] = "num.genes"
= select(branch_rates_arid, clade, node.type, num.genes.missing)
no_clade $label = "Missing clade"
no_cladenames(no_clade)[3] = "num.genes"
# Subset each clade count column to add a label
= rbind(full_clade, partial_clade, descendant_counted, discordant_clade, no_clade)
clade_counts # Convert branch categories to long format
###############
$label = factor(clade_counts$label, levels=c("Full clade", "Partial clade", "Descendant counted", "Discordant clade", "Missing clade"))
clade_counts# Factorize the labels in order
# p = ggplot(clade_counts, aes(x=label, y=num.genes, group=label, color=node.type)) +
# geom_quasirandom(size=2, width=0.25, alpha=0.25) +
# geom_boxplot(outlier.shape=NA, alpha=0.15, width=0.5, color="#666666") +
# ylab("# of genes") +
# xlab("Species tree\nbranch classification") +
# bartheme() +
# theme(axis.text.x = element_text(angle=25, hjust=1)) +
# guides(colour=guide_legend(override.aes=list(alpha=1)))
# print(p)
6.2 dS
# col_branches = read.csv(col_file, header=F, comment.char="#")
# names(col_branches) = c("tp")
$col.branch = "Other"
branch_rates_arid
$col.branch[branch_rates_arid$tp %in% col_branches$tp] = "Colonization"
branch_rates_arid
#tree_info$col.desc.branch = "N"
for(i in 1:nrow(branch_rates_arid)){
if(branch_rates[i,]$node.type == "internal" && branch_rates_arid[i,]$col.branch == "Colonization"){
= getDescendants(rodent_tree, branch_rates_arid[i,]$node)
cur_desc $col.branch[branch_rates_arid$node==cur_desc[1]] = "Descendant"
branch_rates_arid$col.branch[branch_rates_arid$node==cur_desc[2]] = "Descendant"
branch_rates_arid
}
}
= subset(select(branch_rates_arid, clade, node.type, col.branch, dS), col.branch == "Colonization")
col_ds_arid $label = "Colonization (arid genes)"
col_ds_arid#names(full_clade)[3] = "num.genes"
= subset(select(branch_rates_arid, clade, node.type, col.branch, dS), col.branch == "Descendant")
desc_ds_arid $label = "Descendant (arid genes)"
desc_ds_arid
= subset(select(branch_rates_arid, clade, node.type, col.branch, dS), col.branch == "Other")
other_ds_arid $label = "Other (arid genes)"
other_ds_arid
= subset(select(branch_rates, clade, node.type, col.branch, dS), col.branch == "Colonization")
col_ds $label = "Colonization (All genes)"
col_ds#names(full_clade)[3] = "num.genes"
= subset(select(branch_rates, clade, node.type, col.branch, dS), col.branch == "Descendant")
desc_ds $label = "Descendant (All genes)"
desc_ds
= subset(select(branch_rates, clade, node.type, col.branch, dS), col.branch == "Other")
other_ds $label = "Other (All genes)"
other_ds
= rbind(col_ds, desc_ds, other_ds, col_ds_arid, desc_ds_arid, other_ds_arid)
ds_df # Convert branch categories to long format
###############
$label = factor(ds_df$label, levels=c("Colonization (All genes)", "Descendant (All genes)", "Other (All genes)", "Colonization (arid genes)", "Descendant (arid genes)", "Other (arid genes)"))
ds_df# Factorize labels
= list(c("Other (All genes)", "Other (arid genes)"), c("Colonization (All genes)", "Colonization (arid genes)"), c("Descendant (All genes)", "Descendant (arid genes)"))
x_comps # Comparisons to make
= ggplot(ds_df, aes(x=label, y=dS, group=label, color=node.type)) +
p geom_quasirandom(size=2, width=0.25, alpha=0.25) +
geom_boxplot(outlier.shape=NA, alpha=0.15, width=0.5, color="#666666") +
geom_signif(comparisons=x_comps, map_signif_level=TRUE, textsize=4, size=1, step_increase=0.12, margin_top=0.1) +
ylab("dS") +
xlab("Species tree\nbranch partition") +
bartheme() +
theme(axis.text.x = element_text(angle=25, hjust=1)) +
guides(colour=guide_legend(override.aes=list(alpha=1)))
print(p)
###############
= here("docs", "figs", "full-coding-branch-ds-arid.png")
fig_outfile ggsave(fig_outfile, p, width=6, height=4, unit="in")
6.3 dN
= subset(select(branch_rates_arid, clade, node.type, col.branch, dN), col.branch == "Colonization")
col_dn_arid $label = "Colonization (arid genes)"
col_dn_arid#names(full_clade)[3] = "num.genes"
= subset(select(branch_rates_arid, clade, node.type, col.branch, dN), col.branch == "Descendant")
desc_dn_arid $label = "Descendant (arid genes)"
desc_dn_arid
= subset(select(branch_rates_arid, clade, node.type, col.branch, dN), col.branch == "Other")
other_dn_arid $label = "Other (arid genes)"
other_dn_arid
= subset(select(branch_rates, clade, node.type, col.branch, dN), col.branch == "Colonization")
col_dn $label = "Colonization (All genes)"
col_dn#names(full_clade)[3] = "num.genes"
= subset(select(branch_rates, clade, node.type, col.branch, dN), col.branch == "Descendant")
desc_dn $label = "Descendant (All genes)"
desc_dn
= subset(select(branch_rates, clade, node.type, col.branch, dN), col.branch == "Other")
other_dn $label = "Other (All genes)"
other_dn
= rbind(col_dn, desc_dn, other_dn, col_dn_arid, desc_dn_arid, other_dn_arid)
dn_df # Convert branch categories to long format
###############
$label = factor(ds_df$label, levels=c("Colonization (All genes)", "Descendant (All genes)", "Other (All genes)", "Colonization (arid genes)", "Descendant (arid genes)", "Other (arid genes)"))
dn_df# Factorize labels
= list(c("Other (All genes)", "Other (arid genes)"), c("Colonization (All genes)", "Colonization (arid genes)"), c("Descendant (All genes)", "Descendant (arid genes)"))
x_comps # Comparisons to make
= ggplot(dn_df, aes(x=label, y=dN, group=label, color=node.type)) +
p geom_quasirandom(size=2, width=0.25, alpha=0.25) +
geom_boxplot(outlier.shape=NA, alpha=0.15, width=0.5, color="#666666") +
geom_signif(comparisons=x_comps, map_signif_level=TRUE, textsize=4, size=1, step_increase=0.12, margin_top=0.1) +
ylab("dN") +
xlab("Species tree\nbranch partition") +
bartheme() +
theme(axis.text.x = element_text(angle=25, hjust=1)) +
guides(colour=guide_legend(override.aes=list(alpha=1)))
print(p)
###############
= here("docs", "figs", "full-coding-branch-dn-arid.png")
fig_outfile ggsave(fig_outfile, p, width=6, height=4, unit="in")
6.4 dN/dS
= subset(select(branch_rates_arid, clade, node.type, col.branch, dNdS), col.branch == "Colonization")
col_dnds_arid $label = "Colonization (arid genes)"
col_dnds_arid#names(full_clade)[3] = "num.genes"
= subset(select(branch_rates_arid, clade, node.type, col.branch, dNdS), col.branch == "Descendant")
desc_dnds_arid $label = "Descendant (arid genes)"
desc_dnds_arid
= subset(select(branch_rates_arid, clade, node.type, col.branch, dNdS), col.branch == "Other")
other_dnds_arid $label = "Other (arid genes)"
other_dnds_arid
= subset(select(branch_rates, clade, node.type, col.branch, dNdS), col.branch == "Colonization")
col_dnds $label = "Colonization (All genes)"
col_dnds#names(full_clade)[3] = "num.genes"
= subset(select(branch_rates, clade, node.type, col.branch, dNdS), col.branch == "Descendant")
desc_dnds $label = "Descendant (All genes)"
desc_dnds
= subset(select(branch_rates, clade, node.type, col.branch, dNdS), col.branch == "Other")
other_dnds $label = "Other (All genes)"
other_dnds
= rbind(col_dnds, desc_dnds, other_dnds, col_dnds_arid, desc_dnds_arid, other_dnds_arid)
dnds_df # Convert branch categories to long format
###############
$label = factor(ds_df$label, levels=c("Colonization (All genes)", "Descendant (All genes)", "Other (All genes)", "Colonization (arid genes)", "Descendant (arid genes)", "Other (arid genes)"))
dnds_df# Factorize labels
= list(c("Other (All genes)", "Other (arid genes)"), c("Colonization (All genes)", "Colonization (arid genes)"), c("Descendant (All genes)", "Descendant (arid genes)"))
x_comps # Comparisons to make
= ggplot(dnds_df, aes(x=label, y=dNdS, group=label, color=node.type)) +
p geom_quasirandom(size=2, width=0.25, alpha=0.25) +
geom_boxplot(outlier.shape=NA, alpha=0.15, width=0.5, color="#666666") +
geom_signif(comparisons=x_comps, map_signif_level=TRUE, textsize=4, size=1, step_increase=0.12, margin_top=0.1) +
ylab("dN/dS") +
xlab("Species tree\nbranch partition") +
bartheme() +
theme(axis.text.x = element_text(angle=25, hjust=1)) +
guides(colour=guide_legend(override.aes=list(alpha=1)))
print(p)
###############
= here("docs", "figs", "full-coding-branch-dnds-arid.png")
fig_outfile ggsave(fig_outfile, p, width=6, height=4, unit="in")
7 Substitution rates and phenotypes
= read.csv(pheno_data_file, header=T, comment.char="#")
pheno_data # Read the phenotype data
= subset(branch_rates, node.type=="tip")
tips names(tips)[2] = "sample"
= merge(pheno_data, tips, by="sample")
pheno_rates # Select only the tips from the tree data and merge with the phenotyp data
= select(pheno_rates, sample, node, Adult_Mass.g., Total_Length.mm., Head.Body_Length.mm., Tail_Length.mm., Hind_Foot_Length.mm., Relative_Tail_Length, Relative_Hind_Foot_Length, dN, dS, dNdS)
pheno_rates # Get only the rates and data columns
= pheno_rates[order(pheno_rates$node), ]
pheno_rates # Re-sort the data frame by R node order after the merge so the trees still work
= melt(pheno_rates, id.vars=c("sample", "dN", "dS", "dNdS"))
pheno_rates_long # Melt
###############
phylosig(rodent_tree, log(pheno_rates$Adult_Mass.g.), test=T)
## [1] "x has no names; assuming x is in the same order as tree$tip.label"
## [1] "some data in x given as 'NA', dropping corresponding species from tree"
##
## Phylogenetic signal K : 0.553626
## P-value (based on 1000 randomizations) : 0.001
# Bloomberg K
phylosig(rodent_tree, log(pheno_rates$Adult_Mass.g.), method="lambda", test=T)
## [1] "x has no names; assuming x is in the same order as tree$tip.label"
## [1] "some data in x given as 'NA', dropping corresponding species from tree"
##
## Phylogenetic signal lambda : 0.999934
## logL(lambda) : -188.981
## LR(lambda=0) : 111.854
## P-value (based on LR test) : 3.84705e-26
#Pagel's lambda
###############
###############
= gls(dS ~ log10(Adult_Mass.g.), correlation = corMartins(1,phy = rodent_tree),
ds_pgls data = pheno_rates, method = "ML", na.action="na.omit")
summary(ds_pgls)
## Generalized least squares fit by maximum likelihood
## Model: dS ~ log10(Adult_Mass.g.)
## Data: pheno_rates
## AIC BIC logLik
## -1040.784 -1028.585 524.3922
##
## Correlation Structure: corMartins
## Formula: ~1
## Parameter estimate(s):
## alpha
## 27.16056
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 0.023575360 0.004316682 5.461454 0.0000
## log10(Adult_Mass.g.) -0.001736261 0.001522657 -1.140283 0.2559
##
## Correlation:
## (Intr)
## log10(Adult_Mass.g.) -0.686
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -1.43047510 -0.87546092 -0.58695207 0.03658596 3.95989978
##
## Residual standard error: 0.01159
## Degrees of freedom: 156 total; 154 residual
coef(ds_pgls)
## (Intercept) log10(Adult_Mass.g.)
## 0.023575360 -0.001736261
# Run the PGLS
= lm(pheno_rates$dS ~ log10(pheno_rates$Adult_Mass.g.))
ds_reg
# plot(log10(pheno_rates$Adult_Mass.g.),pheno_rates$dS)
# abline(a = coef(pglsModel)[1], b = coef(pglsModel)[2])
# abline(regmodel)
# # Plot the PGLS
# fig_outfile = here("docs", "figs", "full-coding-pheno-mass-ds.png")
# png(fig_outfile, width=6, height=4, units="in", res=320)
# plot(log10(pheno_rates$Adult_Mass.g.),pheno_rates$dS)
# abline(a = coef(pglsModel)[1], b = coef(pglsModel)[2])
# dev.off()
# # Save the figure
= ggplot(pheno_rates, aes(x=log10(Adult_Mass.g.), y=dS)) +
ds_mass_p geom_point(size=3, alpha=0.5, color="#999999") +
geom_abline(aes(slope=coef(ds_pgls)[2], intercept=coef(ds_pgls)[1], color="PGLS"), size=1.5, linetype="dashed") +
geom_abline(aes(slope=coef(ds_reg)[2], intercept=coef(ds_reg)[1], color="Linear"), size=1.5, linetype="dashed") +
scale_color_manual(values=c("PGLS"=corecol(numcol=1), "Linear"=corecol(numcol=1, offset=1))) +
xlab("Adult mass\n(log grams)") +
ylab("dS") +
bartheme()
print(ds_mass_p)
# ds
###############
= gls(dN ~ log10(Adult_Mass.g.), correlation = corMartins(1,phy = rodent_tree),
dn_pgls data = pheno_rates, method = "ML", na.action="na.omit")
summary(dn_pgls)
## Generalized least squares fit by maximum likelihood
## Model: dN ~ log10(Adult_Mass.g.)
## Data: pheno_rates
## AIC BIC logLik
## -1602.617 -1590.418 805.3087
##
## Correlation Structure: corMartins
## Formula: ~1
## Parameter estimate(s):
## alpha
## 47.0703
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 0.003782930 0.0005530926 6.839596 0.0000
## log10(Adult_Mass.g.) -0.000128679 0.0002543312 -0.505950 0.6136
##
## Correlation:
## (Intr)
## log10(Adult_Mass.g.) -0.849
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -1.7760243 -0.9259444 -0.5474557 0.1060652 3.7769149
##
## Residual standard error: 0.001658745
## Degrees of freedom: 156 total; 154 residual
coef(dn_pgls)
## (Intercept) log10(Adult_Mass.g.)
## 0.0037829298 -0.0001286788
# Run the PGLS
= lm(pheno_rates$dN ~ log10(pheno_rates$Adult_Mass.g.))
dn_reg
= ggplot(pheno_rates, aes(x=log10(Adult_Mass.g.), y=dN)) +
dn_mass_p geom_point(size=3, alpha=0.5, color="#999999") +
geom_abline(aes(slope=coef(dn_pgls)[2], intercept=coef(dn_pgls)[1], color="PGLS"), size=1.5, linetype="dashed") +
geom_abline(aes(slope=coef(dn_reg)[2], intercept=coef(dn_reg)[1], color="Linear"), size=1.5, linetype="dashed") +
scale_color_manual(values=c("PGLS"=corecol(numcol=1), "Linear"=corecol(numcol=1, offset=1))) +
xlab("Adult mass\n(log grams)") +
ylab("dN") +
bartheme()
print(dn_mass_p)
# dN
###############
= gls(dNdS ~ log10(Adult_Mass.g.), correlation = corMartins(1,phy = rodent_tree),
dnds_pgls data = pheno_rates, method = "ML", na.action="na.omit")
summary(dnds_pgls)
## Generalized least squares fit by maximum likelihood
## Model: dNdS ~ log10(Adult_Mass.g.)
## Data: pheno_rates
## AIC BIC logLik
## -660.1746 -647.9752 334.0873
##
## Correlation Structure: corMartins
## Formula: ~1
## Parameter estimate(s):
## alpha
## 87.39131
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 0.16462371 0.010132684 16.246802 0.0000
## log10(Adult_Mass.g.) 0.01181371 0.005156843 2.290881 0.0233
##
## Correlation:
## (Intr)
## log10(Adult_Mass.g.) -0.932
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -1.3806683 -0.4957832 0.2061664 0.8910370 3.9256032
##
## Residual standard error: 0.03068497
## Degrees of freedom: 156 total; 154 residual
coef(dnds_pgls)
## (Intercept) log10(Adult_Mass.g.)
## 0.16462371 0.01181371
# Run the PGLS
= lm(pheno_rates$dNdS ~ log10(pheno_rates$Adult_Mass.g.))
dnds_reg
= ggplot(pheno_rates, aes(x=log10(Adult_Mass.g.), y=dNdS)) +
dnds_mass_p geom_point(size=3, alpha=0.5, color="#999999") +
geom_abline(aes(slope=coef(dnds_pgls)[2], intercept=coef(dnds_pgls)[1], color="PGLS"), size=1.5, linetype="dashed") +
geom_abline(aes(slope=coef(dnds_reg)[2], intercept=coef(dnds_reg)[1], color="Linear"), size=1.5, linetype="dashed") +
scale_color_manual(values=c("PGLS"=corecol(numcol=1), "Linear"=corecol(numcol=1, offset=1))) +
xlab("Adult mass\n(log grams)") +
ylab("dN/dS") +
bartheme() +
theme(legend.position="bottom")
print(dnds_mass_p)
# dN/dS
###############
= get_legend(dnds_mass_p)
p_legend = plot_grid(ds_mass_p + theme(legend.position="none"),
p_grid + theme(legend.position="none"),
dn_mass_p + theme(legend.position="none"),
dnds_mass_p ncol=3)
= plot_grid(p_grid, p_legend, nrow=2, rel_heights=c(1,0.1), align='vh')
p #print(p)
= here("docs", "figs", "full-coding-pgls-mass.png")
fig_outfile ggsave(fig_outfile, p, width=10, height=4, unit="in")
# Save the figure
## Avg dS per tip vs phenotype
= ggplot(pheno_rates_long, aes(x=log(value), y=log(dS))) +
p geom_point(size=2, alpha=0.2, color="#333333") +
geom_smooth(method="lm", se=F, linetype="dashed", color=corecol(numcol=1, pal="wilke", offset=2)) +
xlab("log avg. trait value per tip") +
ylab("log dS per tip") +
facet_wrap(~variable, scales="free_x") +
bartheme()
print(p)
## Avg dN per tip vs phenotype
= ggplot(pheno_rates_long, aes(x=log(value), y=log(dN))) +
p geom_point(size=2, alpha=0.2, color="#333333") +
geom_smooth(method="lm", se=F, linetype="dashed", color=corecol(numcol=1, pal="wilke", offset=2)) +
xlab("log avg. trait value per tip") +
ylab("log dN per tip") +
facet_wrap(~variable, scales="free_x") +
bartheme()
print(p)
## Avg dN/dS per tip vs phenotype
= ggplot(pheno_rates_long, aes(x=log(value), y=log(dNdS))) +
p geom_point(size=2, alpha=0.2, color="#333333") +
geom_smooth(method="lm", se=F, linetype="dashed", color=corecol(numcol=1, pal="wilke", offset=2)) +
xlab("log avg. trait value per tip") +
ylab("log dN/dS per tip") +
facet_wrap(~variable, scales="free_x") +
bartheme()
print(p)
= read.tree(file="../../data/trees/full_coding_iqtree_astral.cf.bl.nrf25.rooted.treefile")
astral_bl_tree
= pheno$sample[!is.na(pheno$Adult_Mass.g.)]
mass_samples
= subset(pheno, sample %in% mass_samples)
mass_df = mass_df$Adult_Mass.g.
mass_data names(mass_data) = mass_df$sample
= subset(tips, sample %in% mass_samples)
mass_rates = mass_rates$dS
mass_ds names(mass_ds) = mass_rates$sample
= drop.tip(astral_bl_tree, setdiff(astral_bl_tree$tip.label, mass_samples))
rodent_tree_mass plotTree(rodent_tree_mass, type="fan", ftype="i")
#plot(rodent_tree_mass, label.offset=0.1)
#nodelabels(round(mass_data,3), adj=c(-10,0), cex=0.7)
= fastAnc(rodent_tree_mass, log(mass_data), vars=TRUE, CI=TRUE)
mass_anc
= contMap(rodent_tree_mass, log(mass_data), plot=FALSE)
obj plot(obj, type="fan", legend = 0.7*max(nodeHeights(rodent_tree_mass)), fsize=c(0.7,0.9))
#phenogram(rodent_tree_mass,log(mass_data),fsize=0.6,spread.costs=c(1,0))
# mass_tree = ggtree(rodent_tree_mass, size=0.8, ladderize=F) +
# #scale_color_manual(name='Branch partition', values=corecol(numcol=2)) +
# xlim(0, 0.12) +
# geom_tiplab(color="#333333", fontface='italic', size=2) +
# theme(legend.position=c(0.15,0.9))
# print(mass_tree)
#
# pic_mass = pic(log(mass_data), rodent_tree_mass)
# pic_ds = pic(mass_ds, rodent_tree_mass)
#
# plot(pic_mass, pic_ds)
# fit_mass_ds = lm(pic_ds ~ pic_mass -1)
# abline(fit_mass_ds)
#
# summary(fit_mass_ds)
= read.tree(file="../../data/trees/full_coding_iqtree_astral.cf.bl.nrf25.rooted.treefile")
astral_bl_tree
= pheno$sample[!is.na(pheno$Adult_Mass.g.)]
mass_samples
= subset(pheno, sample %in% mass_samples)
mass_df = mass_df$Adult_Mass.g.
mass_data names(mass_data) = mass_df$sample
= subset(tips, sample %in% mass_samples)
mass_rates = mass_rates$dS
mass_ds names(mass_ds) = mass_rates$sample
= drop.tip(astral_bl_tree, setdiff(astral_bl_tree$tip.label, mass_samples))
rodent_tree_mass = ggtree(rodent_tree_mass, size=0.8, ladderize=F) +
mass_tree #scale_color_manual(name='Branch partition', values=corecol(numcol=2)) +
xlim(0, 0.12) +
geom_tiplab(color="#333333", fontface='italic', size=2) +
theme(legend.position=c(0.15,0.9))
print(mass_tree)
= pic(log(mass_data), rodent_tree_mass)
pic_mass = pic(mass_ds, rodent_tree_mass)
pic_ds
plot(pic_mass, pic_ds)
= lm(pic_ds ~ pic_mass -1)
fit_mass_ds abline(fit_mass_ds)
summary(fit_mass_ds)